【数学建模之Python】12.追赶法求解三对角方程组

本文介绍了在数值计算中如何使用追赶法高效地求解三对角线性方程组,该方法在处理大型矩阵时具有优势。通过一个五阶方程组的实例,展示了追赶法的具体实现过程,并给出了Python代码实现,结果与传统方法对比验证了其正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果解决了你的问题,点个赞再走嘛٩(๑❛ᴗ❛๑)۶

目录

一、前言

二、方程组的特点

1.类型 

2.要求

3.方法的优势

 三、算法步骤

 四、例题+代码

1.用追赶法求解以下五阶方程组

 2.代码


一、前言

1.在数值计算中,如三次样条插值或用差分法求解微分方程边值问题时会遇到三对角方程组。现在来讲一讲求解方法。

2.本文借鉴了https://www.bilibili.com/video/BV1aA41147Ab

二、方程组的特点

1.类型 

 

2.要求

3.方法的优势

当矩阵比较大的时候用这种方法会快很多

 三、算法步骤

 四、例题+代码

1.用追赶法求解以下五阶方程组

 2.代码

import numpy as np

A = np.array([[4, 1, 0, 0, 0],
              [1, 4, 1, 0, 0],
              [0, 1, 4, 1, 0],
              [0, 0, 1, 4, 1],
              [0, 0, 0, 1, 4]])
f = np.array([2, 1, 1, 1, 2])
# 一、左乘A逆
print('传统方法:', np.linalg.inv(A) @ f)

# 二、追赶法
a = np.array([0, 1, 1, 1, 1], dtype=float)
b = np.array([4, 4, 4, 4, 4], dtype=float)
c = np.array([1, 1, 1, 1, 0], dtype=float)
y = np.zeros(5)
B = np.zeros(5)
x = np.zeros(5)
y[0] = f[0] / b[0]
d = b[0]
for i in range(1, 5):
    B[i - 1] = c[i - 1] / d
    d = b[i] - a[i] * B[i - 1]
    y[i] = (f[i] - a[i] * y[i - 1]) / d
x[4] = y[4]

for i in range(3, -1, -1):
    x[i] = y[i] - B[i] * x[i + 1]
print('追赶法:', x)

求解结果:

传统方法: [0.48076923 0.07692308 0.21153846 0.07692308 0.48076923]
追赶法: [0.48076923 0.07692308 0.21153846 0.07692308 0.48076923]

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若oo尘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值