求二次型的标准型

二次型 (Quadratic Form)

二次型是一个多项式,通常表示为:

Q(x) = x^T A x

其中 x 是一个列向量,A 是一个对称矩阵。二次型是一个关于变量的二次多项式。

标准型 (Canonical Form)

标准型是将二次型转换为一种简化形式,使其易于分析。常见的标准型包括主轴形式和正定、负定或不定的形式。

求二次型的标准型的方法

  1. 写出二次型:首先确定给定的二次型 Q(x) = x^T A x

  2. 特征值分解:计算矩阵 A 的特征值和特征向量。通过特征值分解,可以将 A 表示为:

    A = P D P^{-1}

    其中 D 是对角矩阵,对角线上是特征值,P 是由特征向量构成的矩阵。

  3. 坐标变换:通过坐标变换y = P^{-1} x将 Q(x)) 转换为标准型:

    Q(y) = y^T D y

示例

Q(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 3x_2^2得标准型:

由对称矩阵A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix},使得Q(x) = x^T A x

  1. 特征值分解

    • 首先计算矩阵 A 的特征值和特征向量。
    • 对于矩阵A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix},特征方程为: \det(A - \lambda I) = 0\begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)(3 - \lambda) - 1 = 0 ,解出特征值\lambda_1 = 4\lambda_2 = 2
  2. 特征向量

    • 对于\lambda_1 = 4\lambda_2 = 2,求出相应的特征向量v_1= \begin{pmatrix} 1 \\ 1 \end{pmatrix}v_2= \begin{pmatrix} 1 \\ -1 \end{pmatrix}
  3. 坐标变换

    • 将特征向量组成的矩阵记作 P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},进行坐标变换 y = P^{-1} x
    • 将 Q(x)表示为 Q(y) = y^T D y = 5y_1^2 + 2y_2^2,其中 D = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} 是对角矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值