二次型 (Quadratic Form)
二次型是一个多项式,通常表示为:
其中 x 是一个列向量,A 是一个对称矩阵。二次型是一个关于变量的二次多项式。
标准型 (Canonical Form)
标准型是将二次型转换为一种简化形式,使其易于分析。常见的标准型包括主轴形式和正定、负定或不定的形式。
求二次型的标准型的方法
-
写出二次型:首先确定给定的二次型
。
-
特征值分解:计算矩阵 A 的特征值和特征向量。通过特征值分解,可以将 A 表示为:
其中 D 是对角矩阵,对角线上是特征值,P 是由特征向量构成的矩阵。
-
坐标变换:通过坐标变换
将 Q(x)) 转换为标准型:
示例
求得标准型:
由对称矩阵,使得
-
特征值分解:
- 首先计算矩阵 A 的特征值和特征向量。
- 对于矩阵
,特征方程为:
,解出特征值
,
。
-
特征向量:
- 对于
和
,求出相应的特征向量
,
。
- 对于
-
坐标变换:
- 将特征向量组成的矩阵记作
,进行坐标变换
。
- 将 Q(x)表示为
,其中
是对角矩阵。
- 将特征向量组成的矩阵记作