经典分治算法——Karatsuba乘法算法

1. 算法思路

基本思想:

给定两个 n 位整数 x 和 y,将它们各自拆分成两部分:

x = a \times 10^{m} + b,\quad y = c \times 10^{m} + d,

其中 m = \lceil n/2 \rceil,a, b, c, d分别表示整数 x 和 y 的高位和低位部分。

按照普通乘法的公式:

x \times y = a \times c \times 10^{2m} + (a \times d + b \times c) \times 10^{m} + b \times d.

传统方法需要计算 4 个大数乘法:a×c 、a×d 、b×c 和 b×d 。

Karatsuba的优化思路在于减少乘法次数。注意到:

(a+b) \times (c+d) = a \times c + a \times d + b \times c + b \times d,

因此可以推出:

a \times d + b \times c = (a+b) \times (c+d) - a \times c - b \times d

这样只需计算三个乘法:

  • ac=a×c 

  • bd=b×d 

  • (a+b)(c+d) 

然后利用上述关系,计算中间项,从而减少乘法运算的次数。


2. 理论推导与时间复杂度

分治递归关系的推导:

设 T(n) 表示两个 n 位数相乘的时间复杂度。按照 Karatsuba 算法的步骤:

  • 将每个整数分成两部分,需要 O(1) 或 O(n) 时间(主要是分割字符串或位运算)。

  • 进行 3 次递归乘法,规模为 n/2,每次时间为 T(n/2)。

  • 加法、减法和移位操作需要 O(n) 时间。

因此递归关系为:

T(n)=3T(n2)+O(n) 

利用主定理分析:

对于递归关系T(n) = a\, T\left(\frac{n}{b}\right) + O(n^d) ,这里 a=3 ,b=2 ,d=1 。

计算临界指数:

\log_b a = \log_2 3 \approx 1.585.

因为 \log_2 3 > 1(即 d),所以根据主定理:

T(n) = O\left(n^{\log_2 3}\right) \approx O\left(n^{1.585}\right)

这比传统的 O(n²) 算法更高效,尤其在大整数乘法中优势明显。


3. 算法步骤

  1. 基本情况:

    • 如果 n 足够小(例如 n = 1 或 n低于某个阈值),直接使用常规乘法返回结果。

  2. 分解数字:

    • 设 m = ⌈n/2⌉,将整数 x 和 y 分解为:

      x = a \times 10^{m} + b,\quad y = c \times 10^{m} + d.
  3. 递归计算三个乘积:

    • 计算ac = \text{Karatsuba}(a, c)

    • 计算 bd = \text{Karatsuba}(b, d)

    • 计算 (a+b)(c+d) = \text{Karatsuba}(a+b, c+d)

  4. 合并中间结果:

    • 计算中间项:

      ad+bc = (a+b)(c+d) - ac - bd.
    • 计算最终结果:

      x \times y = ac \times 10^{2m} + (ad+bc) \times 10^{m} + bd.
  5. 返回结果:

    • 返回合并后的结果。


算法总结

  • 算法思路: 利用分治思想,将大整数分解为高低位两部分,通过三个子问题(而不是四个)递归计算乘积,利用加减法合并结果。

  • 理论推导: 递归关系为 T(n)=3T(n/2)+O(n) ,由主定理得出时间复杂度为 O(n^{\log_2 3}) \approx O(n^{1.585})

  • 算法步骤: 包括基本情况处理、分解数字、递归计算、合并结果以及返回最终乘积。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值