本文使用脚本语言实现Lumerical官方案例——环形谐振器之第一部分,知识讲解部分稍多。如有错误,欢迎大家批评指正。
一、创建结构
1.1 代码实现
#ring_resonator_draw.lsf
switchtolayout;
selectall;
delete;
um = 1e-6;
#创建基底
addrect();
set("material", "SiO2 (Glass) - Palik");
set("x min", -12.5*um);
set("x max", 12.5*um);
set("y min", -8*um);
set("y max", 8*um);
set("z min", -4*um);
set("z max", 0);
addstructuregroup();
set("name", "ring_resonator");
addrect();
set("material", "Si (Silicon) - Palik");
set("x min", -12.5*um);
set("x max", 12.5*um);
set("y min", 3.4*um);
set("y max", 3.8*um);
set("z min", 0);
set("z max", 0.18*um);
addtogroup("ring_resonator");
addrect();
set("material", "Si (Silicon) - Palik");
set("x min", -12.5*um);
set("x max", 12.5*um);
set("y max", -3.4*um);
set("y min", -3.8*um);
set("z min", 0);
set("z max", 0.18*um);
addtogroup("ring_resonator");
addrect();
set("material", "Si (Silicon) - Palik");
set("x min", -5e-8*um);
set("x max", 5e-8*um);
set("y min", 2.9*um);
set("y max", 3.3*um);
set("z min", 0);
set("z max", 0.18*um);
addtogroup("ring_resonator");
addrect();
set("material", "Si (Silicon) - Palik");
set("x min", -5e-8*um);
set("x max", 5e-8*um);
set("y min", -2.9*um);
set("y max", -3.3*um);
set("z min", 0);
set("z max", 0.18*um);
addtogroup("ring_resonator");
addring();
set("material", "Si (Silicon) - Palik");
set("x", 0);
set("y", 0);
set("z min", 0);
set("z max", 0.18*um);
set("outer radius", 3.3*um);
set("inner radius", 2.9*um);
set("theta start", -90);
set("theta stop", 90);
addtogroup("ring_resonator");
addring();
set("material", "Si (Silicon) - Palik");
set("x", 0);
set("y", 0);
set("z min", 0);
set("z max", 0.18*um);
set("outer radius", 3.3*um);
set("inner radius", 2.9*um);
set("theta start", 90);
set("theta stop", 270);
addtogroup("ring_resonator");
1.2 相关知识
(1)环形谐振器的理解
环形谐振器是一种像环形跑道一样的光学或电学元件。从外观上看,环形谐振器就如同一个封闭的圆环,这个圆环可以是圆形、椭圆形等各种环形形状. 它一般由能够传输光或电信号的材料制成,比如在光学领域,通常使用硅等半导体材料或者一些光学玻璃等;在电学领域,可能会使用金属导线等。并且,它还会有一些用于输入和输出信号的端口,就像跑道的入口和出口一样,光或电信号通过这些端口进入和离开环形谐振器.
工作原理 :当光信号从输入端口进入环形谐振器后,就会在这个环形的“跑道”里不断地传播。如果光信号在环形谐振器里传播一圈的距离正好是光波长的整数倍时,这些光就会发生相长干涉,也就是光波的波峰和波谷相互叠加,使得光的强度得到增强,形成谐振状态。打个比方,就好像一群人在环形跑道上跑步,当每个人跑一圈所用的时间正好是某个固定时间的整数倍时,他们就会在某些时刻同时到达某个位置,从而形成一种有规律的“聚集”状态,光信号的谐振就类似于这种“聚集”.
作用和应用:① 滤波作用:在光通信中,环形谐振器可以像一个筛子一样,只允许特定波长的光通过,而将其他波长的光阻挡或削弱。比如在波分复用系统中,不同波长的光信号承载着不同的信息,通过环形谐振器就可以把我们需要的特定波长的光信号筛选出来,从而实现对光信号的滤波和选择。② 信号处理与存储:环形谐振器还可以对信号进行处理和存储。在一些光存储器件中,利用环形谐振器中光信号的谐振特性,可以将光信号的信息以某种方式存储起来,并且在需要的时候再将其读取出来。就好像把物品放在一个个特定的小格子里,需要的时候再从相应的格子里取出物品一样. ③ 产生纠缠量子对:在量子通信领域,环形谐振器可以用于产生纠缠量子对。通过一些特殊的物理过程,如自发四波混合,环形谐振器能够使光子之间发生相互作用并产生纠缠态,这些纠缠量子对是构建量子网络和进行量子通信的关键要素.
(2)自由光谱范围(FSR)和品质因数(Q)的理解
① 自由光谱范围(FSR):在环形谐振器中,自由光谱范围是指谐振器的输出光谱中,相邻两个谐振峰之间的波长间隔或者频率间隔。想象环形谐振器就像是一个能对特定频率(或波长)的光产生强烈响应的“小乐器”。不同频率的光进入这个“小乐器”,当频率满足一定条件时,就会产生共振,就像乐器在特定频率下会发出响亮的声音一样。而FSR就是这些“响亮声音”(谐振峰)之间的间隔。例如,如果把光的频率比作音符,FSR就是相邻两个“能让乐器发出响亮共鸣的音符”之间的间隔。
物理意义和应用场景:FSR是环形谐振器的一个重要特性参数。在光通信领域,它对于确定信道间隔很重要。比如说,在波分复用(WDM)技术中,不同的光信号通过不同的频率(波长)来传输信息,环形谐振器的FSR就可以帮助我们确定可以容纳多少个不同频率的光信号通道,同时保证这些通道之间不会相互干扰。
② 品质因数(Q):品质因数是衡量环形谐振器能量存储能力和能量损耗特性的一个无量纲参数,它等于谐振频率(或波长)与半高全宽(FWHM,指谐振峰的高度为最大值一半处的宽度)之比。可以把环形谐振器想象成一个储存能量的“小水库”,Q值就像是描述这个“小水库”质量好坏的一个指标。Q值越高,说明这个“水库”在储存水(能量)的时候,漏水(能量损耗)的情况越少。从光学角度看,高Q值意味着光在环形谐振器里能够来回反射(共振)很多次,能量损耗比较小,就好像光在这个“小赛道”(环形谐振器)里可以愉快地跑很多圈才慢慢停下来;而低Q值则表示光没跑几圈能量就损失完了,就像赛道有很多“漏洞”,光的能量很快就漏掉了。
物理意义和应用场景:在光学传感器中,高Q值的环形谐振器可以使传感器对微小的环境变化(比如折射率的微小改变)更加敏感。因为高Q值下,共振峰很尖锐,微小的变化就能引起共振条件的改变,从而在输出信号上产生比较明显的变化,有助于提高检测精度。在激光技术领域,Q值也会影响激光的输出特性,高Q值的谐振腔可以使激光具有更好的单色性和相干性。
二、添加特征模求解器并找到群折射率
2.1 代码实现
#ring_resonator_sweep_wavelength.lsf
um = 1e-6;
#运行脚本绘制结构
ring_resonator_draw;
addfde();
set("solver type", "2D X normal");
set("x", -3.8*um);
set("y min", 1.6*um);
set("y max", 5.6*um);
set("z min", -0.425*um);
set("z max", 0.575*um);
set("wavelength", 1.5*um);
set("number of trial modes",10);
#run;
setanalysis("wavelength",1.5e-6);
findmodes;
selectmode(1);
setanalysis("number of test modes",10);
setanalysis("track selected mode", 1);
setanalysis("stop wavelength", 1.6*um);
setanalysis("number of points", 4);
setanalysis("detailed dispersion calculation", 1);
frequencysweep;
f = getdata("frequencysweep", "f");
#根据真空中的光速(c)和从波长扫描结果中获取的群速度(vg)数据来计算群折射率(ng)
ng=c/getdata("frequencysweep","vg");
plot(c/f*1e6, ng, "Wavelength (um)", "Group Index");
2.2 相关知识
(1)set()和setanalysis()区别
`set`函数主要用于设置模拟对象(如器件结构、求解器等)的各种物理参数和几何参数。例如,在设置一个波导的几何尺寸、材料属性,或者设置求解器(如FDTD、FDE等)的模拟区域大小、边界条件等参数时会用到`set`。`setanalysis`函数主要用于设置与分析过程相关的参数。这些参数通常是在已经定义好模拟对象和基本求解参数之后,用于控制如何进行分析,例如设置模式分析中的模式数量、频率扫描范围等分析相关的操作。总的来说,`set`函数侧重于构建和配置模拟对象本身的各种参数,是在模拟设计阶段广泛使用的函数;而`setanalysis`函数则侧重于在已经有了模拟对象的基础上,对分析过程进行精细化的参数设置,用于控制分析的方式和范围,通常在模拟的分析阶段发挥主要作用。
三、确定耦合长度
3.1 代码实现
#ring_resonator_coupling_length.lsf
um = 1e-6;
#运行脚本绘制结构
ring_resonator_draw;
addfde();
set("solver type", "2D X normal");
set("x", 0);
set("y min", 1.6*um);
set("y max", 5.6*um);
set("z min", -0.425*um);
set("z max", 0.575*um);
set("wavelength", 1.5*um);
set("number of trial modes",10);
wavelength = 1.5*um;
setanalysis("wavelength",wavelength);
findmodes;
?neff1 = abs(getdata("FDE::data::mode1", "neff"));
?neff2 = abs(getdata("FDE::data::mode2", "neff"));
#交叉耦合长度的计算公式是基于两个模式(偶数模式和奇数模式)的有效折射率之差
#通过wavelength除以两倍的两个模式有效折射率之差的绝对值来计算)
?L_cross = wavelength / 2 / abs( neff1-neff2);
四、添加varFDTD进行仿真
4.1 代码实现
#ring_resonator_varFDTD.lsf
um = 1e-6;
#运行脚本绘制结构
ring_resonator_draw;
#添加varfdtd
addvarfdtd();
set("simulation time", 5000e-15);
set("x", 0);
set("x span", 10*um);
set("y", 0);
set("y span", 10*um);
set("z min", -0.5*um);
set("z max", 0.5*um);
set("bandwidth", "broadband");
set("x0", -3.1*um);
set("y0", 0.05*um);
set("test points", [-0.375, 0.313596;0.375, -0.313596;0.375, 0.313596;-0.375, -0.313596]*um);
#添加光源
addmodesource();
set("x", -4.5*um);
set("y", 3.6*um);
set("y span", 3*um);
set("wavelength start", 1.5*um);
set("wavelength stop", 1.6*um);
#添加监视器
addpower();
set("name", "drop");
set("monitor type", "Linear Y");
set("x", -4.2*um);
set("y", -3.6*um);
set("y span", 2*um);
set("override global monitor settings", 1);
set("frequency points", 500);
#创建显示器的副本
select("drop");
copy;
set("name", "through");
set("x", 4.2*um);
set("y", 3.6*um);
#添加时域监视器
addtime();
set("name", "time_drop");
set("x", -4.2*um);
set("y", -3.6*um);
#创建副本
select("time_drop");
copy;
set("name", "time_through");
set("x", 4.2*um);
set("y", 3.6*um);
#run;
#创建场分布监视器
addprofile();
set("name", "full_profile");
set("monitor type", "2D Z-normal");
set("x min", -10*um);
set("x max", 10*um);
set("y min", -6*um);
set("y max", 6*um);
set("z", 0);
#添加电影监视器
addmovie();
set("name", "movie");
set("scale", 0.1);
set("x min", -8*um);
set("x max", 8*um);
set("y min", -6*um);
set("y max", 6*um);
#添加有效折射率监视器
addindex();
set("name", "index");
set("monitor type", "2D Z-normal");
set("x min", -10*um);
set("x max", 10*um);
set("y min", -6*um);
set("y max", 6*um);
set("spatial interpolation", "none");
4.2 相关知识
(1)varFDTD的理解
在Lumerical中,VarFDTD是一种用于光子学仿真的求解器技术。
从功能角度:可以把VarFDTD当作一个“虚拟的光子实验室”,在这个“实验室”里,能够模拟光子在各种微小的光学器件里是怎么跑的、怎么相互作用的,像光波导、耦合器、环形谐振器等这些小器件中的光传播、模式特性、损耗等情况都可以通过它来研究.
从计算优势角度 :我们知道,正常情况下要模拟一个三维的光子器件结构,计算量会很大,就像你要数清楚一大盒密密麻麻的珠子一样困难。而VarFDTD很聪明,它会使用一种叫有效折射率方法的“魔法”,把三维的结构变成二维的来模拟,就好像把那盒珠子铺成一层来数,这样一来,计算量就大大减少了,计算速度也会快很多,同时还能保证一定的精度,在短时间内就能得到结果.
从适用场景角度:如果你要设计平面光波导,用VarFDTD就能快速知道波导中的光场分布、模式特性等,然后根据这些信息去调整波导的尺寸、折射率等参数,让光在里面传得又好又快,损耗还低。对于那些更复杂的集成光学器件和光子集成电路的设计和仿真,它也是个得力助手,能帮工程师们快速评估不同组件之间的光耦合、信号传输等性能,从而设计出高性能、高集成度的光子产品.
(2)模式光源(Mode sources)
模式光源用来将导入模式插入到模拟区域。模拟光源的几何参数(例如中心位置、以及跨距)用来计算结构体的寻入模式。三维模拟计算时沿平面的截面计算模式,二维时则沿线计算。从可利用的模式列表中选择一个模式插入到模拟区域中。
角色类比:把光学器件或者光波导系统想象成是一条条“光的高速公路”,模式光源就像是在这些“高速公路”入口处精准投放车辆(光)的“交通调度员”。它能确保光以特定的“行驶方式”(模式)进入器件,而不是随意地乱闯。
具体作用:① 精准激发模式:它可以使得光在进入光波导或光学谐振腔等结构时,按照预先设定好的模式进行传播。就好像在高速公路上,有的车道是快车道(一种模式),有的是慢车道(另一种模式),模式光源能够让光一开始就“行驶”在特定的车道上,保证光在整个器件中以期望的模式和方向传播。 ② 模拟实际输入条件:在实际的光学系统中,光源和器件之间的耦合是很重要的。模式光源可以用来模拟真实场景下,光源与光学器件精确耦合时输入光的状态。例如,在光纤通信系统里,模式光源能够模拟从光纤输入到其他光器件中的光信号,其模式特性符合实际的输入要求,这样就能更真实地研究器件对这种特定输入光的响应。③ 研究模式特性:借助模式光源,可以专门研究某种模式下光在器件中的各种特性,如光场分布、传输损耗、相位变化等。这就好比我们只关注快车道上车辆(光)的行驶情况,包括它们的速度变化(光场强度变化)、在路段中的损耗(传输损耗)等。
在Lumerical中,模式光源的参数主要有以下这些: ① 基本属性选项卡参数:INJECTION AXIS:设定模式光源的传播轴。 DIRECTION :设定模式光源的传播方向,有FORWARD(沿正方向传播)和BACKWARD(沿负方向传播)两种选择。 AMPLITUDE:模式光源的振幅,用于控制光源的强度,光强与振幅的平方成正比。PHASE:点光源的相位,单位为度,仅在设定多个辐射光源间的相对延迟时才有用。 MODE SELECTION:仅适用于模式光源,启动模式求解器并允许用户选择所需要的模式注入。 THETA:传播角度,单位为度数,相对于上述定义的传播轴。PHI:传播角度,单位为度数,按右手定则绕传播轴的转动角度。 ② 几何形状选项卡参数 : 此选项卡中包含设定光源位置和大小的选项,如光源的中心位置坐标等,用于确定模式光源在模拟区域中的具体位置及范围等几何信息。③ 频率/波长选项卡参数 : 可存取与光源频率或波长相关的选项,例如可以设置光源的频率、波长等参数,以满足不同的模拟需求,并且当参数刷新时,窗口右侧的图形会刷新,方便查看光源相关信息。
① 算哪一点的模式作为参考模式,这个是那个点的坐标
② 变分法还是互益法
③ 在仿真的时候对材料的有效折射率是用宽光谱仿真还是窄光谱仿真,区别是用窄光谱的话,沿着垂直于纸面的方向上不同波长对应的有效折射率几乎不变,这个时候用窄光谱,这个时候做二维仿真的时候不同波长用的是一个有效折射率,对一个材料来说用的一个折射率数值,啥时候用呢,就是波导色散加上材料色散都很小,或者波长范围比较小,可以用
④ 这几个位置是我们选的参考位置,意思你要计算哪些点的有效折射率
⑤ 偏振在这里决定了,因为我们先把slab mode算出来,就是把垂直方向的mode算出来,你选定一个模式,在另一个方向就确定了,光源那边定不了
(3)模式光源与其他类型光源区别
在Lumerical中,模式光源与其他类型光源主要有以下区别:
光源特性 :① 模式光源:具有特定的模式分布,能够精准地激发并产生特定模式的光场,如TE模式、TM模式等,其光场分布在空间上具有特定的形状和相位关系。比如在波导中,模式光源可以产生与波导模式匹配的光,使光沿着波导高效传输. ② 平面波光源:是一种在空间中传播方向和振幅都均匀的理想光源,其等相位面是平面。平面波光源常用于模拟无限远处的光源或在较大空间范围内近似均匀的光照情况,如模拟太阳光对物体的照射等,但它无法像模式光源那样精确地匹配波导等结构中的特定模式。③ 偶极子光源:可视为一个点光源,其发出的光在各个方向上的辐射强度和相位分布不均匀,具有一定的方向性和偏振特性。偶极子光源适用于模拟一些微观尺度下的发光源,如原子、分子等的发光,但同样不能直接产生特定的波导模式.
应用场景 :① 模式光源:主要用于研究光在波导、光学谐振腔等具有特定模式结构中的传输、耦合、干涉等现象,以及设计和优化基于这些结构的光子器件,如光纤通信中的光收发模块、光滤波器等,可确保光以期望的模式进行传播和相互作用,从而实现特定的光学功能. ② 平面波光源:常用于光学系统的远场特性分析、光学元件的散射特性研究以及一些不需要考虑光源模式特性的一般性光学模拟,如光学成像系统中对物体的照明模拟、大气光学中光的传播模拟等。③ 偶极子光源:常用于研究光与物质的相互作用,如荧光发射、拉曼散射等微观过程,以及在纳米光子学中模拟纳米尺度下的光发射和吸收现象,帮助理解和设计基于量子点、纳米颗粒等的光电器件。
参数设置 :① 模式光源:需要设置诸如模式选择、传播轴、传播方向、振幅、相位等参数,以确定所激发的具体模式以及光在波导中的传播特性,还可能涉及到与波导结构相关的参数设置,如弯曲半径、弯曲方向等,用于模拟光在复杂波导结构中的传输. ② 平面波光源:主要设置参数包括波长、振幅、传播方向、偏振方向等,这些参数相对较为简单直接,用于定义平面波的基本特性,以满足不同的模拟需求,如改变波长来研究光学元件的色散特性等。③ 偶极子光源:参数设置则侧重于位置、方向、振幅、频率以及偶极矩等,以确定偶极子光源的发光特性和空间位置,从而准确模拟其在特定场景下的光发射和与周围环境的相互作用.
(4)“Linear Y”的理解
在Lumerical中,“monitor type”(监视器类型)里的“Linear Y”可以这样理解:
从图形显示角度:想象你在观察一个物理量(比如光功率、电场强度等)随时间或者空间位置的变化情况。“Linear Y”就像是一个规则的、按照线性比例来画坐标轴(Y轴)的方式。 - 比如说,如果你在监测光在波导中传播时某个位置的光功率,“Linear Y”会让光功率的值在Y轴上以均匀的间隔来表示。如果光功率从1mW增加到2mW,Y轴上对应的间隔和从2mW增加到3mW的间隔是一样长的,就像我们平常使用的普通尺子一样,刻度是均匀分布的。
从数据记录角度 :它意味着在记录被监测物理量的数据时,是按照线性的方式来存储的。如果物理量的变化是均匀的,那么存储的数据点之间的差值也是比较有规律的。例如,当你用“Linear Y”类型的监视器监测电场强度沿波导方向的变化时,它会如实且均匀地记录下电场强度每一点的值,方便后续你查看和分析这些数据,就像按顺序一个一个地数东西一样,很有规律。
(5)频域功率监视器的理解
在Lumerical中,频域功率监视器主要用于在频域下对光信号的功率进行监测和分析。 可以把频域功率监视器想象成一个专门测量不同频率光信号功率大小的“探测器”。它就像是一个收音机的调谐器,能够分别检测出不同电台频率所对应的信号强度,只不过这里的“电台频率”就是光信号的频率,而“信号强度”就是光信号的功率. 从数学角度来说,它是对时域中的光信号进行傅里叶变换后,得到各个频率分量的功率情况 。例如,一个包含多种颜色光的复合光信号进入系统,频域功率监视器可以告诉我们每种颜色(对应不同频率)光的功率是多少.
使用场景 :① 分析光信号的频谱特性:当需要了解光信号在不同频率下的功率分布时,就可以使用频域功率监视器。比如研究一个宽带光源发出的光,通过频域功率监视器可以得到该光源在各个频率点的功率,从而确定其光谱范围、中心频率、频谱宽度等参数,帮助评估光源的性能和特性. ② 研究光学器件的频率响应:对于各种光学器件,如滤波器、放大器、调制器等,其对不同频率的光信号往往有不同的响应特性。使用频域功率监视器可以输入不同频率的光信号,然后监测经过器件后的功率变化,从而得到器件的频率响应曲线。以滤波器为例,通过频域功率监视器可以清晰地看到滤波器对不同频率光的透过率或衰减情况,进而确定其滤波特性和截止频率等.③ 优化光学系统的设计:在设计复杂的光学系统时,需要考虑不同光学元件之间的相互作用以及对光信号的频域功率监视器影响。频域功率监视器可以帮助分析光信号在系统中的传输和变化情况,以便调整系统的参数和结构,优化系统的性能。例如,在设计一个光通信系统时,通过频域功率监视器可以监测信号在传输过程中的功率损耗和频率失真情况,从而采取相应的措施来提高系统的传输效率和信号质量. ④ 研究光与物质的相互作用:当光与物质相互作用时,如光在介质中的吸收、散射、荧光发射等过程,会导致光信号的频率和功率发生变化。频域功率监视器可以用于监测这些变化,从而研究光与物质相互作用的机理和特性。比如在研究荧光材料时,通过频域功率监视器可以测量激发光和荧光发射光的功率和频率,进而了解荧光材料的发光效率、光谱特性以及能量转移过程等.
(6)Time Monitor
Time Monitor即时间监视器,主要用于记录电磁场随时间的变化情况.Time Monitor如同一个高精度的“时间相机”,它在仿真过程中,按照特定的时间间隔对电磁场的各个分量(如电场强度、磁场强度等)进行“拍照”记录,从而得到电磁场在不同时刻的状态信息。这些记录下来的数据能够反映出电磁场的动态变化过程,就像通过一系列连续的照片可以看出物体的运动轨迹一样. 与频域监视器不同,频域监视器侧重于分析光信号在不同频率下的特性,如频域功率监视器主要关注光信号的功率在频域的分布情况 ;而Time Monitor则专注于光信号或电磁场在时域的变化,它能够捕捉到信号的瞬态特性、脉冲形状、上升下降时间等时域特征。例如,在研究超短光脉冲的传播时,频域监视器只能给出脉冲在频域的频谱信息,而Time Monitor可以直接展示脉冲在时间轴上的形状和演化过程. 一般来说,一个仿真里面至少要有一个Time Monitor,以便确认仿真结果是否充分收敛,进而确定仿真结果的可靠性。通过观察Time Monitor记录的电磁场数据在不同时间步长下的变化情况,如果数据在一定时间后趋于稳定,说明仿真已经收敛;反之,如果数据持续波动或无明显规律,则可能需要调整仿真参数,如网格尺寸、时间步长等,以获得更准确可靠的结果.
时域监视器(Time-domain monitors)
SPATIALINTERPOLATION:在 FDTD 计算中,通常不记录空间同一点的电磁场分量。而是记录 Yee胞元不同位置的电场和磁场向量的分量。为了正确的计算坡印廷矢量和电磁场能量密度将场插值到 Yee 胞元的同一位置。本选项控制如何进行场插值。目前,时间监视器支持“最近网格格子( NEAREST MESH)”和“不插值(NONE)”选项。选择 NEAREST MESH 时,场插值到最近 FDTD 网格格子的边界。选择 NONE 时不进行插值,Yee 胞元不同位置记录电场和磁场分量。MIN SAMPLING PER CYCLE:本参数确定每光学周期的最小采用量,缺省设置为 10。SAMPLING RATE:实际采用速率为赫兹(Hz)。DOWN SAMPLE TIME: 下向采用时间步长。
(7)Field profile monitor
Field profile monitor是FDTD中用于监测电磁场分布情况的一种工具,就像是一个“电磁场探测器”,能够在特定的位置和区域内,对不同时刻或不同频率下的电场、磁场的强度、相位等信息进行记录和显示. 作用 :① 直观呈现场分布:它可以将电磁场在空间中的分布情况以图像或数据的形式展示出来,帮助用户直观地了解电磁场在不同位置的强弱、方向等信息,比如可以清晰地看到光在波导中传播时,电磁场在波导横截面上的分布形态. ② 辅助分析结构特性:通过观察场分布监视器所得到的结果,能够分析所研究的光学或电磁结构对电磁场的影响,进而了解结构的性能和特点。例如,在研究微纳结构的光学性质时,可以借助场分布监视器来观察电磁场在结构表面和内部的分布,从而判断结构是否能够实现预期的光学功能,如聚焦、滤波等. ③ 验证理论和设计:将模拟得到的场分布与理论预期或设计目标进行对比,验证理论模型的正确性和设计的合理性。如果模拟结果与理论预期相符,说明理论模型和设计是可靠的;反之,则需要对理论模型或设计进行修正和优化.
(8)Movie monitor
Movie monitor就像是一个“电磁场录像机”,它能够在仿真过程中,随着时间的推移,持续记录特定区域内电磁场的变化情况,并将这些连续的记录保存为类似电影的文件格式,以便后续查看和分析. 作用 :① 直观展示场的动态变化:它可以把电磁场在空间中的分布随时间的演变过程以动画的形式展示出来,让用户能够非常直观地看到电磁场是如何在结构中传播、反射、折射以及相互作用的。例如,在观察光脉冲在波导中的传输时,通过Movie monitor可以清晰地看到光脉冲的形状、强度等在传输过程中的变化情况,以及在遇到障碍物或不同介质界面时的反射和折射现象. ② 深入分析物理过程:有助于深入理解一些复杂的物理现象和过程,比如电磁场的共振、耦合等。通过观察Movie monitor记录的电磁场动态变化,可以分析这些现象发生的条件、过程和特点,从而更好地掌握其物理本质。以环形谐振器为例,借助Movie monitor可以观察到光在环形结构中的多次反射和干涉过程,以及最终形成谐振状态时光场的稳定分布情况,进而理解环形谐振器的工作原理和特性 。③ 辅助优化结构设计:在设计光学或电磁结构时,根据Movie monitor所展示的电磁场动态行为,可以评估结构对电磁场的调控效果,发现潜在的问题和不足之处,进而对结构进行优化和改进。比如在设计光子晶体微腔时,通过观察Movie monitor记录的光场在微腔中的分布和演化,可以调整微腔的几何参数、材料属性等,以实现更好的光场限制和增强效果,提高微腔的品质因数和性能。
MIN SAMPLING PER CYCLE:本参数确定每光学周期的最小采用量。SAMPLING RATE:将每光学周期的最少点变换为实际采用速率(赫兹)。DOWN SAMPLE TIME: 下向采用时间步长。
FRAME RATE: 屏幕显示的帧速,单位为每秒帧数,缺省值为 30.
(9)scale参数
在FDTD中,scale参数的不同范围具有不同的含义和作用:① 小于1的范围 :当scale参数小于1时,意味着对所监测的电磁场数据进行缩小显示。例如,scale设置为0.5,表示将电磁场的强度值缩小为原来的一半进行显示。常用于电磁场强度变化范围较大,但用户更关注整体场分布的大致趋势,而非局部细节的情况。比如在研究较大尺寸的光学器件或电磁场传播范围较广的场景中,缩小比例可以使整个电磁场的分布情况在有限的显示区域内更完整地呈现出来,便于观察电磁场在大范围内的传播、散射等宏观特性,帮助研究人员快速把握电磁场的整体形态和变化规律。② 等于1的范围:scale参数等于1时,表示不对电磁场数据进行缩放,按照其原始的数值大小进行显示。在大多数常规的FDTD仿真中,如果电磁场的强度范围和数值大小本身比较适合直接观察和分析,不需要进行特别的缩放处理时,会使用默认的scale值1。③ 大于1的范围 :scale参数大于1则会对电磁场数据进行放大显示。例如,scale设置为2,那么电磁场的强度值将被放大两倍后再进行显示。通常用于需要突出电磁场中微弱变化或细节特征的情况。比如在研究电磁场与微小结构的相互作用时,微弱的电磁场变化可能对研究结果具有重要意义,但由于其强度相对较小,在原始数据显示下可能难以察觉。通过设置较大的scale参数,可以将这些微弱的变化放大,使其在视觉上更加明显,有助于研究人员更细致地观察电磁场在微小结构附近的分布、耦合等微观特性,从而更深入地了解电磁场与物质的相互作用机制。
(10)Index Monitor
Index Monitor可以被理解为“折射率监视器”。它主要用于监测仿真区域内材料折射率的分布情况。就像是一个专门检测不同位置材料“光学密度”的探测器,因为折射率在一定程度上反映了材料对光传播的影响,类似于不同光学密度的介质对光的折射能力不同。作用:① 材料特性分析:帮助研究人员了解仿真区域内材料折射率的分布细节。例如,在研究复合材料或具有渐变折射率的结构(如渐变折射率光纤)时,Index Monitor可以清晰地显示出折射率在不同位置的变化情况,从而确定材料的光学均匀性或梯度特性。② 光传播路径预测:由于光的传播路径会受到材料折射率的影响,通过Index Monitor得到的折射率分布,可以预测光在该结构中的传播方向和可能的折射、反射情况。比如,在设计微纳光学器件时,知道了折射率分布,就能大致推测光在器件中的传播轨迹,就像知道了地图上不同区域的地形(折射率分布),就能推测行人(光)可能走的路线一样。 ③ 验证理论和设计:将模拟得到的折射率分布与理论预期或设计目标进行对比,验证所采用的理论模型是否正确以及设计是否达到预期。例如,在模拟一种新型光子晶体结构时,通过Index Monitor监测的折射率分布来检验其是否符合理论上对光子禁带等特性的预期。
SPATIAL INTERPOLATION:反射率监视器有三个选项,缺省选项“SPECIFIED POSITION(指定位置)”返回监视器位置所在处的反射率。其余两个选项NEAREST MESH CELL 和d NONE见上述时域监视器中的介绍。在采用网格细化的模拟计算中,缺省选项不显示反射率平均值,其它两个选项显示反射率平均值。
4.3 结果
五、案例脚本分析
#########################################################
# file: ring_resonator.lsf
#
# Description: Send transmission trough ring resonator to
# Visualizer. Transmission data comes from 3
# different sources: an .ldf with 3D FDTD data,
# a MODE Solutions propagator simulation and an
# analytical formula
#
#
# Copyright 2012, Lumerical Solutions, Inc.
########################################################
# FDTD results
#这段代码的主要目的是处理环形谐振器(ring resonator)相关的传输数据,
#并将其发送到可视化工具(Visualizer)中展示。数据来源有三个,分别是
#3D FDTD 数据文件(.ldf格式)、MODE Solutions 传播器模拟结果以及通过解析公式计算得到的数据,最后把整合的数据进行可视化呈现
#语句从指定的 .ldf 文件中加载 3D FDTD 模拟得到的数据
loaddata("fdtd_results.ldf");
########################################################
# Results from Propagator
# ring resonator design parameters
#首先定义了一些环形谐振器设计相关的关键参数,如中心波长 lambda0 被赋值为 1.55e-6
#自由光谱范围 FSR 通过公式 3200e9*lambda0^2/c计算得出,品质因数 Q 设定为 2000。
lambda0 = 1.55e-6; # center wavelength
FSR = 3200e9*lambda0^2/c; # free spectral range in m
Q = 2000; # Q
# get data from propagator simulation;
T = getresult("drop",'T');
Tdrop_propagator = -T.T;
lambda = c/T.f;
########################################################
########################################################
# Calculation of theory
#利用前面定义的参数以及一些物理理论相关的数学公式,计算了 tau_11 和 tau_12 这两个中间变量,
#它们的计算涉及到波长、自由光谱范围、品质因数等参数,反映了环形谐振器在理论模型下的一些特性
tau_11 = sqrt((lambda*pi/FSR/Q/2)^2+1)-(lambda*pi/FSR/Q/2);
tau_12 = sqrt(1-abs(tau_11)^2);
# offset the phase for a particular peak wavelength
#根据给定的峰值波长 peak_lambda 计算了 phase_offset,并进一步通过一系列复杂的复数运算和
#上述中间变量等计算得到 Tdrop_theory,也就是基于理论公式得出的传输相关的数据
peak_lambda = 1550e-9;
phase_offset = -2i*pi*peak_lambda/FSR;
Tdrop_theory = abs(tau_12)^4/abs(1-tau_11^2*exp(1i*2*pi*lambda/FSR+phase_offset))^2;
########################################################
# create dataset
#使用 matrixdataset 创建了名为 "T_result" 的数据集对象 T_result,然后通过 addparameter 和 addattribute 方法
#分别添加了波长参数 lambda 以及三个不同来源的传输相关属性(理论计算的 Tdrop_theory、传播器模拟的 Tdrop_propagator,还有前面加载的 3D FDTD 对应的 Tdrop_3DFDTD
T_result = matrixdataset("T_result");
T_result.addparameter("lambda",lambda);
T_result.addattribute("Tdrop_theory",Tdrop_theory);
T_result.addattribute("Tdrop_propagator",Tdrop_propagator);
T_result.addattribute("Tdrop_3DFDTD",Tdrop_3DFDTD);
#调用 visualize(T_result); 语句将创建好的包含多来源数据的数据集发送到可视化工具中进行展示,方便用户直观对比不同来源数据在环形谐振器传输特性方面的异同
visualize(T_result);
#########################################################
# file: ring_resonator_fdtd.lsf
#
# Description: This file calculates the results of
# ring_resonator.fsp and saves them to and
# ldf file. The final resulats are plotted
# using ring_resonator.lsf
#
# Copyright 2016, Lumerical Solutions, Inc.
########################################################
#这段代码主要实现了从一个名为 ring_resonator.fsp 的文件对应的仿真结果中
#收集特定端口(端口 2)的数据,并将处理后的数据保存到一个 .ldf 文件中
# collect data from port 2
#这行代码调用了 getresult 函数,从标识为 "FDTD::ports::port 2" 的端口处获取名为 "T" 的结果数据
Tdrop_dataset = getresult("FDTD::ports::port 2","T");
#对从 Tdrop_dataset 中提取出来的 T 参数取绝对值,将其赋值给新变量 Tdrop_3DFDTD
Tdrop_3DFDTD = abs(Tdrop_dataset.T);
#从 Tdrop_dataset 这个结果数据集合中提取出名为 lambda 的数据,并赋值给变量 lambda_3DFDTD
lambda_3DFDTD = Tdrop_dataset.lambda;
# save data to ldf file
#调用 savedata 函数,将之前处理好的代表相关参数的 Tdrop_3DFDTD 数据以及波长相关的 lambda_3DFDTD 数据
#保存到名为 "fdtd_results.ldf" 的文件中
savedata("fdtd_results.ldf",Tdrop_3DFDTD,lambda_3DFDTD);