并查集——108. 冗余连接

108. 冗余连接

题目描述

有一个图,它是一棵树,他是拥有 n 个节点(节点编号1到n)和 n - 1 条边的连通无环无向图(其实就是一个线形图),如图:

现在在这棵树上的基础上,添加一条边(依然是n个节点,但有n条边),使这个图变成了有环图,如图:

先请你找出冗余边,删除后,使该图可以重新变成一棵树。

输入描述

第一行包含一个整数 N,表示图的节点个数和边的个数。

后续 N 行,每行包含两个整数 s 和 t,表示图中 s 和 t 之间有一条边。

输出描述

输出一条可以删除的边。如果有多个答案,请删除标准输入中最后出现的那条边。

输入示例
3
1 2
2 3
1 3
输出示例
1 3
提示信息

### 力扣上的并查集示例题目 #### 题目概述 在 LeetCode 上,并查集是一种非常常见的算法设计模式,用于解决涉及连通性和分组的问题。以下是几个经典的并查集相关题目及其描述。 --- #### 经典题目解析 1. **岛屿数量 (Number of Islands)** 这是一个经典问题,目标是在二维网格中计算由 '1' 表示的陆地组成的岛屿的数量[^2]。可以使用 DFS、BFS 或者并查集来实现。如果选择并查集方法,则可以通过 `union` 操作将相邻的陆地标记为同一集合,最终统计独立集合的数量得到答案。 2. **最长连续序列 (Longest Consecutive Sequence)** 输入一个未排序的整数数组,找到其中最长的连续子序列长度[^3]。此问题可以用哈希表或者并查集求解。通过构建节点之间的连接关系,利用并查集中的 `find` 和 `union` 方法动态维护最大连通区域大小。 3. **朋友圈 (Friend Circles)** 描述了一群学生之间是否存在友谊关系的情况,判断总共有多少个互不相交的朋友圈[^1]。这道题可以直接映射到标准的并查集模型上——每一对朋友视为一条边,执行相应的合并操作后查询总的连通分支数目即可得出结果。 4. **账户合并 (Accounts Merge)** 提供多个电子邮件地址列表以及它们所属用户的姓名信息,要求按照实际拥有这些邮箱的人重新整理输出形式[^4]。这里同样适用基于字符串键值建立图结构再借助并查集完成归类处理逻辑。 5. **冗余连接 II (Redundant Connection II)** 假设树形拓扑被破坏成含有环路的状态,请找出造成这种情况的一条多余边并移除恢复原状。运用带权版并查集技巧检测何时形成闭环从而定位错误链接位置。 --- ```python class UnionFind: def __init__(self, n): self.parent = list(range(n)) def find(self, p): while p != self.parent[p]: self.parent[p] = self.parent[self.parent[p]] # 路径压缩 p = self.parent[p] return p def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return False self.parent[rootP] = rootQ return True ``` 上述代码片段展示了如何定义一个基础版本的支持按秩合并与路径压缩优化后的并查集数据结构实例化过程。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值