天梯赛L2-001紧急救援
作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图。在地图上显示有多个分散的城市和一些连接城市的快速道路。每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上。当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队。
输入格式:
输入第一行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0 ~ (N−1);M是快速道路的条数;S是出发地的城市编号;D是目的地的城市编号。
第二行给出N个正整数,其中第i个数是第i个城市的救援队的数目,数字间以空格分隔。随后的M行中,每行给出一条快速道路的信息,分别是:城市1、城市2、快速道路的长度,中间用空格分开,数字均为整数且不超过500。输入保证救援可行且最优解唯一。
输出格式:
第一行输出最短路径的条数和能够召集的最多的救援队数量。第二行输出从S到D的路径中经过的城市编号。数字间以空格分隔,输出结尾不能有多余空格。
输入样例:
4 5 0 3 20 30 40 10 0 1 1 1 3 2 0 3 3 0 2 2 2 3 2
输出样例:
2 60 0 1 3
题目类型:Dijkstra
解题思路:二维属性的记录, 记录路径的Dijkstra经典题型;
目标输出:路径长度最短时有几条不同的路径,当路径长度最短时,最大的救援队数量是多少,最后输出长度最短且救援队人数最多的那条路径。
注意点:当遇到路径长度相同的情况时,到目标点j的方案, 数应当等于当前到最近点t的方案数与到到目标点j的方案数之和。关于路径记录已知 出发点与目的点,只要记录当前节点的上一个结点即可,最后用递归的方法输出,好处需要更新更短路径时要修改的点就只有一个是O(1)的复杂度,如果用栈记录路径就是O(n)的复杂度。
#include <bits/stdc++.h>
#define rep(x, a, b) for(int x = a; x <= b; x++)
#define pre(x, a, b) for(int x = b; x >= a; x--)
#define ll long long
#define PII pair<int, int>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 550;
int a[N][N], dis[N], path[N], sum[N], w[N], cnt[N];
bool st[N];
int n, m, s, d, step;
void printPath(int sp, int ep){
if(sp == ep) cout<< ep;
else {
printPath(sp, path[ep]);
cout<<' '<<ep;
}
}
void dijkstra()
{
memset(dis, inf, sizeof(dis));
dis[s] = 0; cnt[s] = 1; sum[s] = w[s];
for(int i = 0; i<n; i++)
{
int t = - 1;
for(int j = 0; j< n; j++)
if(!st[j] &&( t == -1 || dis[t] > dis[j])) t = j;
st[t] = true;
for(int j = 0; j< n; j++)
{
if(dis[j] > dis[t] + a[t][j]){
path[j] = t; dis[j] = dis[t] + a[t][j];
cnt[j] = cnt[t];
sum[j] = sum[t] + w[j];
} else if(dis[j] == dis[t] + a[t][j])
{
cnt[j] += cnt[t];
if(sum[j] < sum[t] + w[j])
{
sum[j] = sum[t] + w[j];
path[j] = t;
}
}
}
}
}
void solve()
{
cin>>n>>m>>s>>d;
for(int i = 0; i<n; i++) cin>>w[i];
memset(a, inf, sizeof(a));
for(int i = 0; i< m; i++)
{
int x, y, z;
cin>>x>>y>>z;
a[x][y] = a[y][x] = min(a[y][x] , z);
}
dijkstra();
cout << cnt[d]<<' '<<sum[d]<<endl;
printPath(s, d);
cout<<endl;
}
int main()
{
// int t;
// char ch;
// cin>>t;
// while(t -- )
// {
solve();
// }
return 0;
}