古人云:秀恩爱,分得快。
互联网上每天都有大量人发布大量照片,我们通过分析这些照片,可以分析人与人之间的亲密度。如果一张照片上出现了 K 个人,这些人两两间的亲密度就被定义为 1/K。任意两个人如果同时出现在若干张照片里,他们之间的亲密度就是所有这些同框照片对应的亲密度之和。下面给定一批照片,请你分析一对给定的情侣,看看他们分别有没有亲密度更高的异性朋友?
输入格式:
输入在第一行给出 2 个正整数:N(不超过1000,为总人数——简单起见,我们把所有人从 0 到 N-1 编号。为了区分性别,我们用编号前的负号表示女性)和 M(不超过1000,为照片总数)。随后 M 行,每行给出一张照片的信息,格式如下:
K P[1] ... P[K]
其中 K(≤ 500)是该照片中出现的人数,P[1] ~ P[K] 就是这些人的编号。最后一行给出一对异性情侣的编号 A 和 B。同行数字以空格分隔。题目保证每个人只有一个性别,并且不会在同一张照片里出现多次。
输出格式:
首先输出
A PA
,其中PA
是与A
最亲密的异性。如果PA
不唯一,则按他们编号的绝对值递增输出;然后类似地输出B PB
。但如果A
和B
正是彼此亲密度最高的一对,则只输出他们的编号,无论是否还有其他人并列。输入样例 1:
10 4 4 -1 2 -3 4 4 2 -3 -5 -6 3 2 4 -5 3 -6 0 2 -3 2
输出样例 1:
-3 2 2 -5 2 -6
输入样例 2:
4 4 4 -1 2 -3 0 2 0 -3 2 2 -3 2 -1 2 -3 2
输出样例 2:
-3 2
解题思路:基数过大 ,把所有数据都进来之后,再根据要找的情侣去检索他们所在的照片,分别将与他们有合照的异性朋友的亲密度分别记录在记录在a,b中,最后判断与他们亲密度最高的是不是当前伴侣,若是直接输出,若不是分别输出与其亲密度最高的异性朋友以一定的排序要求。
注意点:1.存在-0,读入最好用string,或者 vector<int>,否则不好判断性别;
2.输出的时候也要注意-0,这个就是第六个点!!!!
3.解决办法:把所有的可能都错一遍就好了:)
AC代码:
#include <bits/stdc++.h>
#include <string>
using namespace std;
int iss[1010];
double as[1010], bs[1010];
vector<int> v[1010];
int tun(string s)
{
int rt = 0;
for(int i = 0; i<(int)s.length(); i++){
if(s[i] >= '0' && s[i] <= '9')
{
rt = rt*10 + (int)(s[i] - '0');
}
}
return rt;
}
void p(int x)
{
if (x == 0 && iss[0] == -1) cout << '-';
cout << iss[abs(x)] * abs(x);
}
int main()
{
int n, k;
cin>>n>>k;
//memset(iss, 1, sizeof(iss));
for(int i = 1; i<= k; i++){
int cnt = 0;
cin>>cnt;
for(int j = 1; j<= cnt; j++)
{
string s;
cin>>s;
int num = abs(atoi(s.c_str()));
if(s[0] == '-') iss[num] = -1;
else iss[num] = 1;
v[i].push_back(num);
}
}
string a, b;
cin>>a>>b;
int ta = abs(atoi(a.c_str())), tb = abs(atoi(b.c_str()));
if(a[0] == '-') iss[ta] = -1;
else iss[ta] = 1;
if(b[0] == '-') iss[tb] = -1;
else iss[tb] = 1;
double max_a = 0, max_b = 0;
for(int i= 1; i<= k; i++)
{
//for(int j= 0; j<(int)v[i].size(); j++) cout<<v[i][j]*iss[v[i][j]]<<' ';
//cout<<endl;
bool flag1 = false, flag2 = false;
for(int j = 0; j<(int)v[i].size(); j++)
{
if(v[i][j] == ta) flag1 = true;
if(v[i][j] == tb) flag2 = true;
}
if(flag1 || flag2)
{
double temp = 1.0/(int)v[i].size();
for(int j = 0; j<(int)v[i].size(); j++)
{
if(flag1 && iss[ta] != iss[v[i][j]])
{
as[v[i][j]] += temp;
max_a = max(max_a, as[v[i][j]]);
}
if(flag2 && iss[tb] != iss[v[i][j]])
{
bs[v[i][j]] += temp;
max_b = max(max_b, bs[v[i][j]]);
}
}
}
}
if(max_a == as[tb] && max_b == bs[ta])cout<<a<<' '<<b<<endl;
else{
for(int i = 0; i <n; i++)
if(iss[i] != iss[ta] && max_a == as[i])
{
p(ta);cout<<' '; p(i);cout<<endl;
}
for(int i = 0; i <n; i++)
if(iss[i] != iss[tb] && max_b == bs[i]){
p(tb);cout<<' '; p(i);cout<<endl;
}
}
return 0;
}