
人工智能
文章平均质量分 86
西门吹雪在编程
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
知识图谱对提升人工智能模型的语境理解能力方面的促进作用
在人工智能的快速发展过程中,知识图谱作为一种能够组织和呈现数据的方式,已经被广泛应用于许多 AI 模型中,尤其是用于提升语境理解能力的任务中。知识图谱通过将数据转换成结构化的知识并将其组织成节点和边的形式,使机器能够理解概念之间的关系和上下文。这种技术在自然语言处理(NLP)、机器学习(ML)、以及深度学习(DL)领域,尤其是强化学习(RL)中发挥了重要的作用。GPT 模型,作为一类大型语言模型,借助知识图谱可以更好地理解语言的深层含义。原创 2024-09-23 08:43:04 · 977 阅读 · 0 评论 -
授人以鱼不如授人以渔:9.11 和 9.9 哪个数字更大?
根据应用的不同,这些 tokens 可以有不同的定义。然而,在涉及精确计算和符号推导的数学问题时,ChatGPT 可能会出现误差或不准确的结果,因为它缺乏对数学符号和运算的深层次理解。举例来说,如果你问 ChatGPT 一个涉及方程求解的问题,它可能会根据训练数据中类似问题的答案来生成回应,而不一定会按照严格的数学推导过程来解题。有朋友猜测,会不会是因为有些国家和地区的老外,日常生活中,使用 “,” 而不是 “.” 作为小数点,所以导致 ChatGPT 在这种含有小数点的题目中,表现不如国产大模型?原创 2024-09-23 08:30:40 · 1117 阅读 · 0 评论 -
什么是 Vector Engine
Vector Engine,这个词语在人工智能,特别是深度学习中常常出现,通常指的是一种专门用于高效处理大规模向量和矩阵运算的硬件或软件技术。一般来说,深度学习中的计算量相当大,因为它的核心运算是大量的向量和矩阵之间的乘积和加法。这也正是为什么卷积神经网络(CNN),循环神经网络(RNN),以及像 GPT-3 这样的大型语言模型,都对硬件的计算能力有着极高的要求。Vector Engine 的设计目标是加速这些核心运算。通常,它们会使用并行处理技术,以便同时处理多个数据流。原创 2024-09-19 22:51:42 · 862 阅读 · 0 评论 -
大模型的涌现是怎么产生的?
然而,令人惊讶的是,在模型规模达到某个阈值之前,增大模型的规模并不会立即带来显著的性能提升,甚至可能会引入更多的过拟合问题。以 GPT 模型为例,GPT 模型从 GPT-2 到 GPT-3,参数量从15亿增长到1750亿,这不仅让模型在语言生成的流畅性和一致性上有了大幅提升,模型还展示出了更多的“涌现”能力,比如更加准确的多语言处理、推理能力,甚至在某些情况下,具备了基础的逻辑推理和数学运算能力。大模型的涌现现象指的是,当模型的规模和训练参数达到一定的阈值时,模型的性能和泛化能力突然会出现显著提升。原创 2024-09-16 23:04:53 · 1297 阅读 · 0 评论 -
在没有机器学习算法之前,围棋游戏软件的人机对弈是什么原理?
在没有现代机器学习算法的时代,围棋软件主要依赖于经典的搜索算法和启发式规则来进行对弈。极小化极大算法与 Alpha-Beta 剪枝是早期计算机棋类游戏中的重要技术手段,而启发式算法则通过经验和模式识别来提高决策效率。然而,围棋的复杂性使得这些传统算法在处理大规模状态空间时遇到瓶颈,导致早期计算机围棋软件在面对高水平人类棋手时表现有限。这些早期技术的发展为后来的机器学习和深度学习技术奠定了基础,而机器学习的引入彻底改变了围棋对弈软件的格局,使计算机在围棋领域中取得了巨大的进步。原创 2024-09-16 23:01:41 · 1269 阅读 · 0 评论 -
用局部最优全局最优来理解反向传播是否合适
这个局部最低点,通过判断损失曲面发现,模型的准确度达到了 95%,然而另一个训练尝试(通过不同的初始化等)可能使得相同结构的模型达到 98% 的准确度。对于实际应用中的深度模型与强化学习模型而言,高维复杂损失空间中的优化将始终面临局部最优的问题,理解与应对方法是每个合格人工智能从业者的必修课。局部最优是指在某个局部范围内找到的最优解,但在更广泛的全局范围内可能不是最好的。理解局部最优和全局最优在机器学习和深度学习中的应用,尤其是在反向传播过程中,确实是一个复杂而又富有深度的主题。原创 2024-09-12 09:35:07 · 507 阅读 · 0 评论 -
什么是少量样本学习(Few-Shot Learning)和零样本学习(Zero-Shot Learning)
少量样本学习(Few-Shot Learning)和零样本学习(Zero-Shot Learning)是近些年来在机器学习领域中备受关注的研究方向。这些方法的出现为解决某些特定问题提供了全新的视角,尤其是在数据稀缺的场景下。这两种学习方法的核心思想是,在不需要大量标注数据的情况下,依然能够训练出高效且表现优异的模型。这种能力在实际应用中具有巨大优势,特别是在那些需要快速适应新任务或新环境的场景中,少量样本学习和零样本学习都展现出了巨大的潜力。原创 2024-09-11 08:58:51 · 1104 阅读 · 0 评论 -
在大型语言模型(LLM)的输出中,结构化输出与非结构化输出相比有哪些显著优势?
所谓结构化输出,指的是模型输出结果以一种规则化、预定义的形式呈现,通常包括表格、列表、树形结构、JSON 格式等。结构化输出具有明确的层次和逻辑关系,易于解析和操作。非结构化输出则指的是自由文本、自然语言形式的回答,这类输出尽管在可读性上较强,但往往缺乏预定义的结构,处理起来更加复杂。在未来几年,人工智能技术将广泛应用于医疗、金融、教育等多个行业,推动产业变革和社会进步。这是一个典型的非结构化输出,内容没有遵循特定的格式规则。"prediction_period": "未来几年","医疗",原创 2024-09-11 08:58:18 · 1513 阅读 · 0 评论 -
如何理解机器学习中的泛化理论
机器学习中的泛化理论是理解和提升模型性能的关键。直观上,泛化能力好的模型不仅能记住训练数据中的模式,还能在新数据上表现良好。模型的复杂性、正则化技术、数据集的大小与多样性、偏差-方差权衡等因素都影响模型的泛化能力。通过理解这些因素,我们可以设计出既不过于复杂也不过于简单的模型,从而在实际应用中取得良好的预测效果。原创 2024-09-10 19:10:12 · 960 阅读 · 0 评论 -
什么是自回归推理
自回归推理基于的一个基本假设是:系统的当前输出与之前的若干输出之间存在一定的关系。因此,可以用过去的输出序列来推测或预测未来的输出。这一过程可以形式化为一个数学表达式,其中当前时间点的输出 (y_t) 是前几个时间点输出的函数:这里 (y_t) 表示在时间点 (t) 的输出,(p) 是自回归模型的阶数,表示考虑了多少个过去的输出,(\epsilon_t) 是误差项,通常假设为零均值的白噪声。在统计学中,自回归模型通常被用于时间序列预测。例如,在经济学中,可以使用过去几个月的股票价格来预测下个月的价格;原创 2024-09-06 13:44:09 · 1016 阅读 · 0 评论 -
什么是大语言模型中的词元概念
词元可以被视为语言的最小信息单位。单词词元化:在许多早期的 NLP 模型中,词元被定义为一个完整的单词。例如,句子“我喜欢人工智能”会被分成三个词元:“我”,“喜欢”,“人工智能”。这种词元化方法相对简单,且直观,因为一个单词通常对应一个特定的意义。字符词元化:有些任务中,词元被定义为单个字符。例如,句子“GPT”会被分成“G”,“P”,“T”三个字符词元。字符级别的词元化能捕捉到一些细粒度的语言特征,尤其适合处理拼写错误或一些低频词汇的场景。子词词元化。原创 2024-09-06 13:41:18 · 1245 阅读 · 0 评论 -
什么是注意力矩阵
注意力矩阵是现代深度学习,尤其是自然语言处理和计算机视觉领域的核心技术之一。它通过对输入序列中不同元素之间的关系进行建模,使得模型能够更好地理解上下文信息,处理长程依赖问题,并显著提升了模型的表示能力。无论是在 NLP、图像处理、多模态学习,还是在强化学习等领域,注意力矩阵都展现出了巨大的应用潜力。原创 2024-09-06 13:39:59 · 1215 阅读 · 0 评论 -
ChatGPT 和计算机工作原理的差异之处比较
在处理数学题目时,ChatGPT 和传统的计算机在工作原理上存在显著的差异。这些差异不仅仅在于技术实现的不同,还体现在思维方式和问题解决的策略上。为了更好地理解这些差异,我们可以从以下几个方面来探讨 ChatGPT 和传统计算机在解答数学问题时的工作原理。原创 2024-09-03 19:28:40 · 567 阅读 · 0 评论 -
什么是消融实验
消融实验(Ablation Study)是一种在机器学习和深度学习中广泛使用的分析方法,用于评估模型各个组件或特征的重要性及其对模型整体性能的影响。通过逐一移除或修改模型的某些部分,研究人员可以更深入地理解这些部分对最终结果的贡献。这种方法在模型设计、优化和解释性研究中具有重要作用,尤其在复杂的深度学习模型和强化学习系统中显得尤为关键。原创 2024-09-03 19:25:01 · 5030 阅读 · 0 评论 -
什么是贪婪采样(Greedy Sampling)
在生成文本摘要时,贪婪采样可以帮助模型快速生成一个简洁、概括性的摘要。在这类任务中,生成的摘要需要高度概括原文内容,贪婪采样的确定性特性有助于生成一个精确的摘要。然而,如果摘要需要保持多样性或捕捉不同的角度,贪婪采样可能会失去部分信息,因此需要结合其他策略使用。贪婪采样是一种简单而有效的序列生成策略,适用于一些需要确定性输出的场合。然而,由于其缺乏多样性和容易陷入局部最优解的特性,在生成需要创意和多样性的文本时,贪婪采样可能并不是最理想的选择。原创 2024-09-03 19:24:21 · 1136 阅读 · 0 评论 -
2024年 SAP BTP 上的 AI 解决方案概述
SAP Business Technology Platform 上的 AI 解决方案包括多个模块和组件,可以笼统地划分成 SAP Joule 和 AI Foundation 两层。AI Foundation 内又包含可以在应用程序中消费的 SAP AI Services,Generative AI Hub 和更底层的 Foundational Models.下图来自 SAP。离应用程序层最近的组件,是 SAP CoPilot 即 Joule.原创 2024-08-14 19:28:01 · 3487 阅读 · 1 评论 -
什么是 linear Regression
线性回归作为一种基础且强大的统计分析工具,具有广泛的应用场景。通过对线性回归模型的深入理解和合理应用,我们可以在很多领域中进行有效的预测和分析。然而,使用线性回归时,必须注意其假设条件和局限性,并在必要时采取适当的改进方法,以确保模型的可靠性和预测性能。线性回归模型的成功应用,离不开对数据的深入理解、合理的模型假设以及对结果的细致评估。在数据分析和机器学习的领域中,掌握线性回归不仅是基础,也是进入更复杂模型分析的关键一步。原创 2024-08-13 19:59:11 · 989 阅读 · 0 评论 -
什么是 Prompt engineering 里的 Chain-of-Thought
Chain-of-thought,顾名思义,是一种模拟人类思维过程的策略。在我们解决复杂问题时,通常会经过一系列逻辑推理步骤,而不是直接得出结论。Chain-of-thought 就是利用这种逐步推理的方式,引导语言模型逐步构建出复杂问题的解决方案。通过在 Prompt 中加入引导模型逐步思考的提示,可以帮助模型更好地理解问题的上下文,并生成更加准确和有逻辑性的回答。Chain-of-thought 是一种强大的 Prompt engineering 技术,通过引导模型逐步思考,使其能够更好地处理复杂任务。原创 2024-08-13 19:57:01 · 679 阅读 · 0 评论 -
什么是大模型的监督式微调
它涉及在一个已有的预训练模型的基础上,使用特定任务的数据进行进一步训练,以提升模型在该任务上的表现。在实际应用中,需要根据具体任务和数据集的特点,灵活调整和优化监督式微调的各个环节,以达到最佳的模型性能。模型架构:在监督式微调中,通常会选择一个已经在大规模数据集上预训练好的模型,比如 GPT-3,然后在这个基础上进行微调。通过在标注数据集上进一步训练预训练模型,能够使模型适应特定任务的需求,提高模型的精度和泛化能力。在进行监督式微调时,通常会冻结预训练模型的大部分参数,仅对顶层的少量参数进行调整。原创 2024-07-15 13:23:53 · 790 阅读 · 0 评论 -
什么是人工智能领域的指令遵从
指令遵从(Instruction Following)在人工智能领域,尤其是自然语言处理(NLP)和生成模型如 GPT-3 和 GPT-4 中,是一个关键概念。它涉及模型接收和执行用户输入的命令或请求的能力。在这个过程中,模型不仅要理解用户的输入,还要生成符合用户期望的输出。这种能力对于构建智能助手、自动化客户服务、内容生成等应用至关重要。本文将深入探讨指令遵从的概念、技术细节、应用以及面临的挑战。原创 2024-07-15 13:11:30 · 1734 阅读 · 0 评论 -
什么是最大化对数似然方法
在统计学中,似然函数是基于观测数据和模型参数的函数。假设我们有一组观测数据 ( x_1, x_2, \ldots, x_n ),并且我们有一个参数化的概率模型 ( P(X|\theta) ),其中 ( \theta ) 是模型的参数。似然函数 ( L(\theta) ) 定义为观测数据在给定参数下的联合概率密度或概率质量。原创 2024-07-15 13:03:24 · 913 阅读 · 0 评论 -
一个老程序员对小浣熊 AI 办公助手的使用体验
我上传的 Excel,第一列为文章标题,请你分析这个 Excel 里总共的文章数量,并且根据文章标题,智能地将这些文章进行归类,然后绘制出饼状图,展示每一类的文章,占文章总数的百分比。请你按照前一篇 Word 文档的页眉设置属性,比如字体类型,字体大小,字体颜色,将这个 Word 文档的第一句话,设置为该 Word 文档的页眉。我期望它能够把“第二篇文章,把这段文字设置为页眉”这句话,设置为页眉,并且按照第一个模版文件中包含的页眉参数,进行同样的设置。你好,我阅读了你生成的 Python 源代码。原创 2024-07-15 12:44:04 · 1628 阅读 · 0 评论 -
小浣熊素材 - 分析博客文章分布
我上传的 Excel,第一列为文章标题,请你分析这个 Excel 里总共的文章数量,并且根据文章标题,智能地将这些文章进行归类,然后绘制出饼状图,展示每一类的文章,占文章总数的百分比。你好,能否根据具体的编程语言,对类型为编程的 21.4% 百分比的文章,进行进一步细分?原创 2024-07-13 10:39:28 · 214 阅读 · 0 评论 -
剪映软件智能字幕的工作原理
剪映软件自动给视频添加字幕的技术原理主要依赖于语音识别技术 (Automatic Speech Recognition, ASR)。这种技术的基本工作流程包括音频信号处理、特征提取、模型匹配和文本生成。原创 2024-07-10 14:06:04 · 1897 阅读 · 0 评论