【数模智能算法】BP神经网络基本算法原理

本文介绍了人工神经网络的基本概念,包括其结构、功能和应用。重点讲解了BP算法,阐述了前馈神经网络的工作原理,特别是BP算法的正向传播和误差反向传播过程。此外,还列举了神经网络在图像处理、信号识别、模式识别等多个领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、什么是神经网络?

二、ANN能干什么?

三、建立和应用神经网络的步骤

四、人工神经元的模型

五、网络模型

六、工作状态

七、BP算法

八、神经网络的应用


 数学建模专栏:数学建模从0到1

一、什么是神经网络?

1、人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反应。

2、人工神经网络(ANN)具有自学习、自组织、较好的容错性和优良的非线性逼近能力。

3、在实际应用中,80%~90%的人工神经网络模型是采用误差反传播算法或其变化形式的网络模型。

一个神经网络的典型结构: