
yolo
文章平均质量分 91
QTreeY123
兴趣是最好的老师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO-V5——你总能在这找到你想要的答案
本文也会以Yolov5s的网络结构为主线,讲解与其他三个模型(Yolov5m、Yolov5l、Yolov5x)的不同点,让大家对于Yolov5有一个深入浅出的了解。转载 2023-06-10 16:57:43 · 4468 阅读 · 0 评论 -
yolo-v3看不懂?手撕代码逐行讲解,附带网盘完整代码实现
手撕yolov3代码,最通俗的语言跟你讲解从0到1的实现!!!!原创 2023-06-10 16:24:02 · 1456 阅读 · 2 评论 -
最详细的yolo-v3和yolo-v4的区别
Yolov4 主要带来了 3 点新贡献:(1)提出了一种高效而强大的目标检测模型,使用 1080Ti 或 2080Ti 就能训练出超快、准确的目标检测器。(2)在检测器训练过程中,验证了最先进的一些研究成果对目标检测器的影响。(3)改进了 SOTA 方法,使其更有效、更适合单 GPU 训练。转载 2023-06-10 11:52:34 · 1464 阅读 · 0 评论 -
yolov4——你总能在这找到你想要的答案
YOLOv4是一种目标检测算法,它是YOLO系列(You Only Look Once)的最新版本。YOLO算法是一种实时目标检测算法,能够在一次前向传播过程中同时进行目标检测和定位。YOLOv4在YOLOv3的基础上进行了改进和优化,提高了检测精度和速度。原创 2023-06-09 15:41:51 · 1300 阅读 · 0 评论 -
YOLOV3——你总能在这找到你想要的答案
YOLOv3是YOLO(You Only Look Once)系列目标检测算法的第三个版本。与之前的版本相比,YOLOv3在准确性和速度上都有所改进。原创 2023-06-10 13:30:46 · 817 阅读 · 0 评论 -
YoloV2——你总能在这找到你想要的答案
YOLOv2(You Only Look Once v2)是YOLO目标检测算法的第二个版本,由Joseph Redmon和Ali Farhadi于2016年提出。YOLOv2在YOLOv1的基础上进行了一系列改进,以提高目标检测的准确性和性能。原创 2023-06-10 13:13:22 · 615 阅读 · 0 评论 -
YOLOV1——你总能在这找到你想要的答案
YOLOv1的核心思想是将目标检测问题转化为一个回归问题,并通过一个单一的卷积神经网络来同时预测目标的类别和边界框。具体而言,YOLOv1将输入图像分成一个固定大小的网格(通常是7x7或14x14),每个网格单元负责检测该单元中是否存在目标以及目标的位置和类别。原创 2023-06-10 13:10:53 · 572 阅读 · 0 评论