AI Agent |一文解析AI智能体3种主流的思考框架(CoT、ReAct、Plan-and-Execute)

构建具备自主规划、执行以及适应复杂任务能力的 AI 智能体,关键在于其“思考”能力。AI 智能体思考框架的出现,正是为了赋予 AI 智能体结构化的推理与决策能力。这些框架为 AI 智能体提供了一套完整的方法论,指导其如何理解目标、分解任务、运用工具、处理信息,并依据环境反馈来调整自身行为。

img

一个优秀的思考框架,能够显著增强 AI 智能体的鲁棒性、提升其效率以及拓展解决问题的泛化能力。接下来,我们将深入探讨3种主流的 AI 智能体思考框架,比如:CoT、ReAct 和 Plan-and-Execute,分析它们的设计理念以及适用场景。

一、AI 智能体3种主流的思考框架剖析

AI 智能体思考框架一、CoT 思维链

思维链(Chain of Thought,CoT)是提升大语言模型(LLM)处理复杂推理任务能力的关键技术。其核心在于引导大模型在给出最终答案之前,先生成一系列结构化的中间推理步骤,这就好比模拟人类解决问题时的逐步思考过程。借助这种方式,LLM 能够更深入地理解问题结构,有效分解复杂任务,并逐步推导出解决方案。这些显式的思考步骤为大模型的决策过程带来了透明度和可解释性,便于用户理解和调试。不过,这种方法的代价是生成冗长的思考链条会增加计算成本和处理延迟。

img

随着 DeepSeek R1 的深度思考模式验证了思维链对推理能力的显著提升效果,各大模型厂商纷纷推出了支持慢思考的模型。比如:腾讯推出了 Hunyuan T1 模型,阿里千问推出了 QwQ 模型。Anthropic 官方还开源了 Sequential Thinking MCP,它通过精心设计的提示词工程,使得原本不支持慢思考的大模型也能实现类似的推理过程。凭借其通用性和易用性,该工具目前已成为使用频率最高的MCP Server(数据来源:https://mcp.so/ranking)。

img

AI 智能体思考框架二、ReAct(Reasoning and Action)

虽然 CoT 提升了大模型的推理能力,但其推理过程主要基于大模型内部知识,缺乏与外部世界的实时交互,这可能导致知识过时、产生幻觉或错误传播。ReAct(Reasoning and Action)框架通过结合“推理”(Reasoning)与“行动”(Action),有效解决了这一问题。它使大模型在推理过程中能够与外部工具或环境互动,获取最新信息、执行具体操作,并根据反馈调整后续步骤。这种动态交互赋予了大模型“边思考边行动、边观察边调整”的能力,其核心运作机制可以概括为思考(Thought)→ 行动(Action)→ 观察(Observation)的迭代循环:

image-20250604102635819

思考(Thought):模型基于当前任务目标和已有的观察信息进行逻辑推理和规划。它会分析问题、制定策略,并决定下一步需要执行的动作(比如:调用哪个工具、查询什么信息)来达成目标或获取关键信息。

行动(Action):根据“思考”阶段制定的计划,大模型生成并执行具体的行动指令。这可能包括调用外部 API、执行代码片段、查询数据库或与用户交互等。

观察(Observation):大模型接收并处理“行动”执行后从外部环境(比如:工具的返回结果、API 的响应、用户的回复)中获得的反馈信息。这些观察结果将作为下一轮“思考”的输入,帮助模型评估当前进展、修正错误,并迭代优化后续的行动计划,直至任务完成。

img

AI 智能体思考框架三、Plan-and-Execute

Plan-and-Execute 是对标准 ReAct 框架的拓展与优化,专为处理复杂、多步骤任务而设计,其将 AI 智能体的工作流程划分为两个核心阶段:

第一、规划阶段

AI 智能体对接收到的复杂任务或目标进行整体分析与理解,生成一个高层次的计划,将原始任务分解为一系列更小、更易管理的子任务或步骤。这种分解有助于在执行阶段减少处理每个子任务所需的上下文长度,且计划通常是一个有序的行动序列,指明了达成最终目标的关键环节。该计划可提前呈现给用户,让用户在执行开始前对计划步骤提出修改意见。

第二、执行阶段

计划制定完成后(可能已采纳用户意见),AI 智能体进入执行阶段,按照规划好的步骤逐一执行每个子任务。在执行每个子任务时,AI 智能体可采用标准的ReAct 循环来处理具体细节,比如:调用特定工具、与外部环境交互或进行更细致的推理。执行过程中,AI 智能体会监控每个子任务的完成情况,若子任务成功则继续下一个;若失败或出现意外情况,AI 智能体可能需重新评估当前计划,动态调整计划或返回规划阶段进行修正。此阶段同样可引入用户参与,让用户对子任务的执行过程或结果进行反馈,甚至提出调整建议。

image-20250605100205618

与标准 ReAct 相比,Plan-and-Execute 模式的主要优势在于:

1、结构化与上下文优化

预先规划将复杂任务分解为小步骤,使 AI 智能体行为更有条理,有效减少执行各子任务时的上下文长度,提升处理长链条任务的效率和稳定性。

2、提升鲁棒性

将大问题分解为小问题,降低单步决策的复杂性,若某个子任务失败,影响范围相对可控,也更容易进行针对性的调整。

3、增强可解释性与人机协同

清晰的计划和分步执行过程使 AI 智能体的行为更容易被理解和调试,更重要的是,任务的分解为用户在规划审批和执行监控等环节的参与提供了便利,用户可对任务的执行步骤提出修改意见,从而实现更高效的人机协作,确保任务结果更符合预期。

这种“规划 - 执行”的思考框架,因其在复杂任务处理上的卓越表现,已成为 AI 智能体领域广泛采用的核心策略之一。比如:3 月份涌现并广受关注的通用 AI 智能体项目,比如: ManusOWLOpenManus 等,均采用了这种方式对用户任务进行拆分和执行,充分展现了其普适性和高效性。

img


二、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值