知一个整数序列A=(a0,a1,…,an-1),其中0<=ai<n(0<=i<n)。若存在ap1=ap2=ap3=apm=x其m>n/2,则称x为A的主元素。例如有A=(0,5,5,3,5,7,5,5),则5位主元素;又如A=(0,5,5,3,5,1,5,7),A中没有主元素。假设A中的n个元素保存在一个一维数组中,请设计尽可能高效的算法,找出A的主元素。若存在主元素,则输出主元素;否则输出-1。
思想:假设第一个元素是主元素,并将次数计为1。一次扫描数组,如果遇到和主元素一样的元素,则次数加1,否则减1,当次数减到0时,将下一个元素作为主元素,直到扫描完整个数组。判断扫描完数组后说存的元素是否为正在的主元素,将次数设为0,遍历整个数组,如果遇见前面统计的主元素,则次数加1,最后判断所出现的次数是否大于数组中元素的一半,是,则为主元素,不是则不是。
代码:
int getMainElem(int A[],int n){
int value,i,count=1;//value用来保持主元素,count用来统计主元素的个数
value=A[0];//开始时,设置第一个元素为主元素
for(i=1;i<n;i++){//遍历整个顺序表
if(A[i] == value){//如果是主元素
count ++;//对个数进行+1
}else if(count > 0){//如果不是,个数大于1则进行减一
count --;
}else{//如果不是,且个数小于或等于0个时,则进行更换主元素
value=A[i];
count=1;
}
}
count=0;
for(i=0;i<n;i++){//统计候选主元素的个数
if(A[i]==value){
count ++;
}
}
return count > n/2 ? value:-1;//如果个数大于顺序表的一半 ,则返回该元素,否则返回-1
}
时间复杂度O(n);空间复杂度O(1)