给你两个按 非递减顺序 排列的整数数组 nums1
和 nums2
,另有两个整数 m
和 n
,分别表示 nums1
和 nums2
中的元素数目。
请你 合并 nums2
到 nums1
中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1
中。为了应对这种情况,nums1
的初始长度为 m + n
,其中前 m
个元素表示应合并的元素,后 n
个元素为 0
,应忽略。nums2
的长度为 n
。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6] 解释:需要合并 [1,2,3] 和 [2,5,6] 。 合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0 输出:[1] 解释:需要合并 [1] 和 [] 。 合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1 输出:[1] 解释:需要合并的数组是 [] 和 [1] 。 合并结果是 [1] 。 注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
思想:顺序表递增有序,则越往后面越大。要求不使用额外空间,则可以从后往前进行比较和合并。分别从后比较两个顺序表的值,将较大的值放到顺序表1的末尾(按照顺序表1从后往前放),直到其中一个顺序表为空,跳出循环。将剩下没合并完的顺序表依次按照从后往前插入到顺序表1中。
代码:
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n) {
int i=m-1,j=n-1,k=m+n-1;
while(i>=0&&j>=0){
//将较大的元素放到表尾
if(nums1[i]>nums2[j]){
nums1[k--]=nums1[i--];
}else{
nums1[k--]=nums2[j--];
}
}//处理剩余表
while(i>=0) nums1[k--]=nums1[i--];
while(j>=0) nums1[k--]=nums2[j--];
}
时间复杂度O(n);空间复杂度O(1)