样本熵的计算与可视化 python

该博客通过 sampen 库计算了 CEEMDAN 分解得到的 IMF 分量的样本熵。样本熵被计算为 m=1 和 m=2 时,距离阈值 r=0.1 和 r=0.2 的情况,并进行了可视化展示。结果显示了不同参数设置下的样本熵变化,用于分析信号的复杂性和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

样本熵的计算包和原理见下链接:

# 计算样本熵 https://sampen.readthedocs.io/en/stable/#with-tox
# 样本熵的解释 https://www.zhihu.com/question/266285555

直接上可视化(我看了很多论文的图,都画这样)

from sampen import sampen2
def sample_entropy(IImfs):
    # 计算样本熵 m=1、2, r=0.1、0.2
    sampen=[]
    for i in IImfs:
        for j in (0.1,0.2):
            sample_entropy=sampen2(list(i),mm=2,r=j,normalize=True)
            sampen.append(sample_entropy)

    # 分离
    entropy_r1m1=[]  # r=0.1、m=1
    entropy_r1m2=[]  # r=0.1、m=2
    entropy_r2m1=[]  # r=0.2、m=1
    entropy_r2m2=[]  # r=0.2、m=2
    for i in range(len(sampen)):
        if (i%2)==0: # r = 0.1
            # m = 1
            entropy_r1m1.append(sampen[i][1][1])
            # m = 2
            entropy_r1m2.append(sampen[i][2][1])
        else: # r = 0.2
            # m = 1
            entropy_r2m1.append(sampen[i][1][1])
            # m = 2
            entropy_r2m2.append(sampen[i][2][1])

    # 可视化       
    fig=pl
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值