你是否好奇,如今的AI为何能对各类问题对答如流?难道它真的达到了“上知天文、下知地理”的全能境界?其实答案并非如此。尽管大语言模型(LLM)凭借海量训练数据展现出强大的语言理解与生成能力,但它并非毫无短板——比如知识储备存在“时间滞后性”,无法覆盖训练截止日期后的新信息,还可能在回答中“凭空编造”不存在的事实,也就是我们常说的“幻觉”问题。
面对这些痛点,有没有办法让AI的回答既全面又精准?当然有!今天要为大家介绍的检索增强生成(RAG)技术,就像给AI配备了一座可随时查阅的“移动图书馆”。在回答问题前,AI会先从这座“图书馆”里精准调取相关资料,再结合自身语言能力组织答案,从根本上提升回答的可靠性与准确性。
一、什么是RAG?用生活场景带你看懂
想理解RAG并不难,我们可以从日常场景入手。假设你是一名历史考生,考官提问:“屠呦呦团队发现青蒿素的关键年份是哪一年?”此时,你是仅凭模糊的记忆仓促作答,还是会先翻阅课本、学术文献等权威资料确认信息?
RAG技术的核心逻辑,就相当于AI的“查资料”过程。它并非单一技术,而是“信息检索”与“内容生成”两大环节的结合,具体流程可拆解为两步:
- 检索(Retrieval):AI接收到用户问题后,会自动从预设的外部知识库(可能是企业文档、学术论文、网页信息等)中,筛选出与问题高度相关的内容片段,这个过程就像在图书馆里根据索引找书。
- 生成(Generation):大语言模型不会直接“凭空创作”,而是以检索到的权威信息为依据,用自然流畅的语言组织成最终回答,确保每一个结论都有迹可循。
简单来说,RAG = 精准信息检索 + 大模型内容生成,它让AI从“凭记忆答题”变成了“查资料后严谨作答”。
二、RAG系统的“核心部件”:从数据加载到答案生成
RAG能稳定运行,离不开一套环环相扣的核心组件,每个组件都承担着关键角色,共同构成完整的“知识检索-生成”链路:
1. 查询(Query):系统的“起点信号”
用户提出的问题(比如“2024年全球新能源汽车销量Top3品牌是哪些?”)就是查询,它是整个RAG系统启动的“指令”,所有后续操作都围绕这个问题展开。
2. 文档加载器(Document Loaders):“知识入库”的第一道门
要让AI有资料可查,首先得把分散的信息“收集”起来。文档加载器的作用,就是从不同来源(如PDF格式的行业报告、网页端的新闻资讯、数据库里的企业数据、甚至Excel表格中的统计信息)提取内容,将其转化为系统可处理的格式,为后续步骤做好准备。
3. 文本分块(Chunking):把“厚书”拆成“便利贴”
如果直接处理整本PDF或长篇文章,不仅效率低,还可能导致关键信息被忽略。文本分块会将长文本拆分成短片段(比如每段200-500个字符),就像把一本厚书拆成一张张写有关键内容的“便利贴”,既方便后续的“信息编码”,也能让检索更精准——毕竟找一张“便利贴”,比翻一整本书快得多。
常见的分块方式包括:
- 基于字符的分块:按固定字符数拆分(如每500字符一段);
- 递归分块(RecursiveCharacterTextSplitter):优先按段落、句子拆分,确保语义完整性;
- 基于Embedding的智能分块:根据文本语义关联性拆分,避免将完整逻辑拆断。
4. 向量嵌入(Embedding):给文本“编数字密码”
计算机无法直接理解文字的含义,向量嵌入就相当于给每个文本片段“编一套数字密码”——通过BERT、E5、BGE等专门的模型,将文字转化为一串数值(即“向量”)。这些数值会隐含文本的语义信息,比如“苹果手机”和“iPhone”的向量会非常接近,而“苹果水果”和“iPhone”的向量则差异较大,为后续的“语义匹配”打下基础。
5. 向量存储(VectorStore):“数字密码”的“存储柜”
生成的文本向量需要一个专门的“仓库”来存放,这个仓库就是向量存储。它不仅能安全存储大量向量,还支持快速检索——就像超市的货架,能让工作人员迅速找到目标商品。常见的向量存储工具包括:
- FAISS(Facebook开源工具,适合小规模数据);
- Milvus(支持大规模数据,适合企业级场景);
- Pinecone(云端向量数据库,无需本地部署);
- Chroma(轻量级工具,适合开发者快速上手)。
6. 检索器(Retriever):AI的“资料筛选员”
当用户提出问题后,检索器会先将问题也转化为向量,然后在向量存储中“比对”,找出与问题向量最相似的文本片段。常见的检索方式有:
- Top-K相似度检索:直接筛选出相似度最高的前K个片段(如前5个);
- 最大边际相关性(MMR):在保证相似度的同时,尽量选择内容不重复的片段;
- BM25关键词检索:基于关键词匹配度筛选,适合对时效性要求高的场景;
- 混合检索(RRF排序融合):结合多种检索方式的结果,进一步提升准确性。
7. 上下文压缩与重排(Reranking):给检索结果“精挑细选”
初步检索出的结果可能存在冗余或相关性不足的情况,这一步就像“二次筛选”——通过交叉编码器、Cohere API等工具,对初步结果重新排序,剔除无关内容,保留最核心、最相关的片段,让后续的生成环节“有优质素材可用”。
8. 大语言模型(LLM):“答案组装师”
最后一步,大语言模型会将重排后的优质信息作为“参考资料”,结合自身的语言组织能力,生成逻辑清晰、表达自然的回答。比如回答“2024年全球新能源汽车销量Top3品牌”时,LLM会基于检索到的权威销量数据,明确列出品牌名称及具体销量,而非凭空猜测。
三、RAG的“过人之处”:优势与典型应用场景
1. 核心优势:解决大模型的“老难题”
相比传统大语言模型,RAG的优势十分突出,正好击中了LLM的“痛点”:
- 知识实时更新:无需重新训练大模型,只需更新外部知识库,就能让AI掌握最新信息(如2024年的政策法规、刚发布的科技成果);
- 答案可信度高:所有回答都基于明确的参考资料,可追溯来源,大幅减少“幻觉”;
- 成本更低:处理特定领域信息时,无需训练专属大模型,只需搭建针对性知识库,降低计算与时间成本;
- 隐私性强:企业可将内部敏感数据(如客户信息、核心技术文档)存入私有知识库,避免数据泄露。
2. 典型应用场景:从企业到生活的多领域覆盖
RAG的实用性已在多个领域得到验证,成为提升效率的“利器”:
- 企业服务:客服机器人可快速查询产品手册、售后政策,精准解答用户问题;内部FAQ助手能帮助员工快速获取规章制度、流程指南;
- 医疗健康:辅助医生检索最新临床指南、药物说明书,为诊断和用药提供参考(需注意:最终决策需由专业医生做出);
- 法律行业:律师可通过RAG快速检索法律法规、相似案例,提升合同审查、案件分析的效率;
- 金融领域:风控系统可实时调取市场数据、企业信用报告,辅助进行风险评估与合规检查;
- 教育学习:个性化辅导系统能根据学生疑问,检索教材、习题解析,生成针对性学习建议,甚至推荐相关拓展资料。
四、RAG vs 长上下文模型:不是“替代”,而是“互补”
随着大模型技术的发展,不少模型支持百万级token的长上下文窗口(比如能“一口气”读完一本长篇小说),有人开始疑问:“既然大模型能记住这么多信息,还需要RAG吗?”
答案是:RAG依然不可或缺,两者是互补关系,而非替代关系。
长上下文模型虽能处理更长文本,但仍存在明显短板:
- 知识滞后性:训练数据有“截止日期”,2023年后的新信息(如2024年的体育赛事结果、新上市的药物)无法覆盖;
- 成本高昂:处理超长文本需要大量计算资源,单次调用成本远高于RAG;
- 精准度不足:文本过长时,大模型可能“遗漏”关键信息,且无法追溯答案来源,仍有“幻觉”风险。
而RAG恰好能弥补这些缺陷:
- 动态更新知识库:新增信息只需加入知识库,无需等待模型迭代;
- 检索精准且低成本:只提取与问题相关的片段,避免无效信息占用资源;
- 来源可追溯:每个结论都能对应到具体资料,提升可信度。
举个例子:如果要让AI回答“2024年诺贝尔生理学或医学奖的获奖成果”,长上下文模型因训练数据未覆盖2024年信息,无法回答;而RAG只需将2024年诺贝尔奖官网的信息加入知识库,就能精准给出答案。
因此,实际应用中,常将两者结合:用长上下文模型处理文本的整体逻辑,用RAG补充最新、最专业的外部信息,实现“1+1>2”的效果。
五、未来展望:RAG将走向何方?
随着AI技术的不断迭代,RAG也在朝着更智能、更多元的方向发展,未来可能出现这些趋势:
- 更智能的查询理解:不仅能识别简单问题,还能理解模糊查询、多轮对话中的隐含需求,甚至自动将复杂问题拆解为多个子问题,分步检索;
- 多模态RAG:突破文本限制,支持对图片、音频、视频等多类型数据的检索与生成。比如用户上传一张产品故障图片,RAG能检索相关维修视频片段,生成图文结合的维修指南;
- 与智能体(Agent)深度融合:RAG将成为AI Agent的“核心知识库”,Agent在执行任务(如制定旅行计划、完成市场调研)时,可通过RAG实时调取信息,自主决策下一步行动;
- 个性化与定制化:根据不同行业、不同用户的需求,自动优化检索策略与生成风格。比如面向医生的RAG会更侧重学术严谨性,面向儿童的RAG则会用更通俗的语言组织答案;
- 性能持续优化:通过微调检索器与生成器,进一步提升检索速度与答案准确性,甚至实现“零延迟”响应。
未来的AI系统,很可能是“RAG + Agent + 长上下文模型”三位一体的架构:Agent负责统筹任务,长上下文模型处理整体逻辑,RAG提供精准、实时的外部知识支撑。
从本质上看,RAG不仅是一项技术,更是一种让AI“回归理性”的思维方式——它让AI摆脱了“凭记忆答题”的局限,学会了“查资料、找依据、说真话”,这也是AI能更好服务于人类的关键所在。
六、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
七、为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
八、大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。