- 博客(3)
- 收藏
- 关注
原创 小白理解transformer里的前馈神经网络
你可以把 Transformer 中每个编码层/解码层想象成一个“信息处理单元”。自注意力层: 是这个单元的“社交达人”。它的职责是让序列中的所有元素互相“聊天”、“交流意见”,从而理解每个元素在整体上下文中的角色和关系(比如“苹果”是“吃”的对象)。前馈神经网络 (FFN): 是这个单元的“思考专家”。它关起门来,对刚交流完的每一个单独的元素(位置),进行深入的个人化思考和学习,挖掘出这个元素本身更深层次、更丰富的内在特征和属性。
2025-08-05 21:30:19
441
原创 小白也能懂---Reranking模型的相关的基本知识
本文通过具体示例展示了Qwen-Rerank模型的完整处理流程。以查询"什么是人工智能?"和候选文档"人工智能是计算机科学的分支..."为例,详细解析了5个关键步骤:1)输入序列构造的特殊模板格式;2)模型前向计算中[EOS]位置的logits提取;3)关键token("yes"/"no")的分数定位;4)二元分数矩阵构建;5)通过LogSoftmax计算相关性概率。结果显示该文档获得99.997%的相关性评分,并辅以数学公式和
2025-08-04 20:25:52
1010
原创 百度有活动免费送文心一言4.0 3个月vip
有人想体验百度智能代码助手吗?比如说代码续写、基于代码库问答,注释生成代码等,我这有个内部渠道可以免费注册 Baidu Comate 90天专业版体验卡,专业版底层是基于文心4.0的,效果更好,速度更快。高级功能无限制使用。
2024-06-27 13:20:33
668
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人