模式分类识别 | Python实现基于LGBM模型的信用类型识别预测

本文介绍如何使用Python的LGBM模型进行信用类型识别预测,强调模型的可解释性和特征重要性,涉及交易流水、银行卡信息、静态信息等多维度特征处理,并通过预测测试数据验证模型效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模式分类识别 | Python实现基于LGBM模型信用类型识别预测

识别效果

3

1
2

文章概述

这里是信用评分最早始于上世纪50年代初。信用评分最初使用统计学方法来区分优秀和不良贷款。最初,信用评分的重点是是否要给贷方发放贷款,后来,这种行为转变成了申请人评分(applicant scoring)。信用评分借着申请人评分这一项成为了一项成功的评价系统。注意,我们模型的可解释性在信用风险预测模型中同样非常重要,因此先梳理下如下流程图。

4

在上图中我们看到:首

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值