模式分类识别 | Python实现基于TCN时间卷积网络实现模式分类识别
效果一览
文章概述
TCN的设计十分巧妙,同ConvLSTM不同的是,ConvLSTM通过引入卷积操作,让LSTM网络可以处理图像信息,其卷积只对一个时间的输入图像进行操作,TCN则直接利用卷积强大的特性,跨时间步提取特征。
模型描述
- ResidualBlock是TCN的基本组件,即包括两个dilation相同的卷积层,卷积+修改数据尺寸+relu+dropout+卷积+修改数据尺寸+relu+dropout。用于构建网络的第一层——输入层,该层会告诉网络我们的输入的尺寸是什么,这一点很重要。1D 卷积层,该层创建了一个卷积核,该卷积核以 单个空间(或时间)维上的层输入进行卷积,以生成输出张量。Dropout层在神经网络层当中是用来减少神经网络过拟合的结构。
- 在进行第一个batch的训练时,有以下步骤:
设定每一个神经网