车俩路径规划 | 考虑随机性的车辆路径规划问题

本文探讨了车辆路径规划中的随机性因素,解释了随机性产生的原因及其对决策的影响。通过机会约束规划的建模方式,将车辆容量约束转化为概率形式,以增强模型的鲁棒性,应对需求不确定性。随机模型虽然预期成本增加,但能抵抗风险,相较于确定性模型更具优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机性模型和确定性模型的不同
随机性存在的原因是,决策者在做决策时,真实需求尚未可知,仅能根据历史数据等信息作出估计,而估计的需求与真实实现的需求往往存在一定差异。本文中介绍的机会约束就是一种将输入数据不确定性纳入考虑的建模方法。

随机性模型的建模方法和处理思路。
建模方法: 考虑随机性的VRP问题可以用机会约束规划、带补偿的随机规划、动态规划、鲁棒优化等方式建模。其中本文采取机会约束规划的建模方式,将确定性模型中的车辆容量确定性约束,转化为机会约束,即该约束成立的概率要大于阈值。
处理思路: 处理机会约束的一般思路为:通过模型转化,将带有概率表达式的约束转化为确定性的不等式或者其他能够直接处理的形式,从而使模型可以直接求解。
随机性造成的影响。
随机模型相比于确定性模型直接求解,预期的成本会增加,但是模型的鲁棒性有所提升,能够抵抗一定程度的风险。在参数波动时,随机性模型的解仍然能够保持较好的表现,但是,确定性模型的解,有可能随着参数的波动产生较大的变化,有时甚至会变得不可行。随机模型和确定模型之间的差异,也可以视为是为了抵抗随机性付出的代价。

Gurobi Optimizer version 9.5.2 build v9.5.2rc0 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值