随机性模型和确定性模型的不同
随机性存在的原因是,决策者在做决策时,真实需求尚未可知,仅能根据历史数据等信息作出估计,而估计的需求与真实实现的需求往往存在一定差异。本文中介绍的机会约束就是一种将输入数据不确定性纳入考虑的建模方法。
随机性模型的建模方法和处理思路。
建模方法: 考虑随机性的VRP问题可以用机会约束规划、带补偿的随机规划、动态规划、鲁棒优化等方式建模。其中本文采取机会约束规划的建模方式,将确定性模型中的车辆容量确定性约束,转化为机会约束,即该约束成立的概率要大于阈值。
处理思路: 处理机会约束的一般思路为:通过模型转化,将带有概率表达式的约束转化为确定性的不等式或者其他能够直接处理的形式,从而使模型可以直接求解。
随机性造成的影响。
随机模型相比于确定性模型直接求解,预期的成本会增加,但是模型的鲁棒性有所提升,能够抵抗一定程度的风险。在参数波动时,随机性模型的解仍然能够保持较好的表现,但是,确定性模型的解,有可能随着参数的波动产生较大的变化,有时甚至会变得不可行。随机模型和确定模型之间的差异,也可以视为是为了抵抗随机性付出的代价。
Gurobi Optimizer version 9.5.2 build v9.5.2rc0