车辆路径规划 | 启发式算法和近似解决方案来解决与网络有效规划相关的现实问题,Python

本文探讨了如何使用启发式算法和近似解决方案来应对网络有效规划中的实际问题,如物流路线优化、通信网络规划等。针对中国邮递员问题这一NP难题,由于其计算复杂性,通常借助Python等工具实现算法以寻找接近最优的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

中国邮递员问题是一个经典的图优化挑战,涉及找到访问图的每个弧(有向或无向)至少一次并以尽可能低的成本返回起点的最小路线。 所呈现的情况可以转化为广泛的应用,例如物流、通信网络、印刷电路、垃圾收集和公共交通。 物流公司可以优化送货路线,电信网络可以规划有效的维护,而这个问题与创建电子电路和规划公共交通路线有关。
就计算复杂性而言,这是一个 NP 难问题,使其极具挑战性,甚至不可能在合理的时间内准确求解,具体取决于所解决问题的大小。 因此,通常采用启发式算法和近似解决方案来解决与网络有效规划相关的现实问题。

代码

# Importando bibliotecas de trabalho
import numpy as np
import pandas as pd
# Matriz de distâncias adjacentes
matDist = [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值