基于GRU - Multihead - Attention的数据多特征分类预测(多输入单输出)
摘要
在大数据时代,数据多特征分类预测成为众多领域的关键技术,如金融风险评估、医疗诊断及智能交通等,其准确性和有效性对决策制定与行业发展至关重要。本研究采用GRU - Multihead - Attention模型开展数据多特征分类预测研究。GRU模型具有结构简单、参数少等优势,能有效处理序列数据;多头注意力机制则可从不同子空间捕捉数据间的复杂关系。将二者结合,旨在提升分类预测性能。实验过程中,精心选取适合多输入单输出场景的数据集,并对其进行清洗、归一化等预处理,随后搭建GRU - Multihead - Attent