凸优化|中科大

说明

此笔记根据中科大凌青老师的凸优化视屏课程整理。

1、凸优化是简单的优化

优化/数学规划(optimization/Mathematical programming)可以被定义为“从一个可行解的集合中,寻找最优的元素”。(说凸优化是简单的优化其实是从global_minal=local_minimal的角度)
数学描述
min f0(x),f0:Rn→R(objectivefunction)min\space f_0(x),f_0:R^n\to R (objective function)min f0(x),f0:RnR(objectivefunction)
subject to (s.t.) f(x)≤bi,i=1,2,...,M subject\space to\space(s.t.)\space f(x)\le b_i,i=1,2,...,M\spacesubject to (s.t.) f(x)bi,i=1,2,...,M 
(f:Rn→R为不等式约束)(f:R^n\to R为不等式约束)(f:RnR)
X=[x1,...,xn]TX=[x_1,...,x_n]^TX=[x1,...,xn]T
那么X∗X^*X是最优解等价于在可行解集中任意的ZiZ_iZi都有f0(X∗)≤f0(Zi)f_0(X^*)\le f_0(Z_i)f0(X)f0(Zi)

2、几个例子

1、数据拟合问题(最小二乘法)
min Σϵi2min\space \Sigma \epsilon^2_imin Σϵi2
2、线性二次调节器LQR
Xk=AXk−1+BuRX_k=AX_{k-1}+Bu_RXk=AXk1+BuR
min J=Σk=1N(XkTQXk+ukTRuk)min\space J=\Sigma^N_{k=1}(X_k^TQX_k+u_kTRu_k)min J=Σk=1N(XkTQXk+ukTRuk)
3、多用户能量控制问题
信噪比:SINRi=Piσi2+Σj≠iαjiPjSINR_i=\frac{P_i}{\sigma^2_i+\Sigma_{j\ne i\alpha_{ji}P_j}}SINRi=σi2+Σj=iαjiPjPi
码率:fi∝log(1+SINRi)f_i\propto log(1+SINR_i)filog(1+SINRi)
min Σi=1Mfi,s.t.0≤P≥bimin\space \Sigma^M_{i=1}f_i,s.t.0\le P\ge b_imin Σi=1Mfi,s.t.0Pbi 极大化网络流量
4、图像处理
去噪:Φ0(x,y)→Φ(x,y)\Phi_0(x,y)\to \Phi(x,y)Φ0(x,y)Φ(x,y)
基于先验知识(自然存在的光滑和连续)的Tv范数可以定义为在2个方向上的差分:
∣∣Φ∣∣Tv=ΣyΣx(Φ(x,y)−Φ(x,y−1))2+(Φ(x,y)−Φ(x−1,y))2||\Phi||_{Tv}=\Sigma_y\Sigma_x (\Phi(x,y)-\Phi(x,y-1))^2+(\Phi(x,y)-\Phi(x-1,y))^2ΦTv=ΣyΣx(Φ(x,y)Φ(x,y1))2+(Φ(x,y)Φ(x1,y))2
min ∣∣Φ∣∣Tv+λ∣∣Φ−Φ0∣∣F2min\space ||\Phi||_{Tv}+\lambda||\Phi-\Phi_0||^2_Fmin ΦTv+λΦΦ0F2(F范数是所有元素平方和,λ\lambdaλ是规范化因子)
6、最优路径问题
min Σi,j∈Vwijxijmin\space \Sigma_{i,j\in V}w_{ij}x_{ij}min Σi,jVwijxij
s.t. xij=0/1,Σjxij−Σjxji={1,i=s;−1,i=d0,otherwises.t.\space x_{ij}=0/1, \Sigma_jx_{ij}-\Sigma_jx_{ji}=\left\{\begin{aligned}1,i=s; \\-1,i=d \\0, otherwise \end{aligned}\right.s.t. xij=0/1,ΣjxijΣjxji=1,i=s;1,i=d0,otherwise

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值