计算之魂 1.3 怎样寻找最好的算法(python)

文章介绍了四种不同的算法来解决找到一个实数序列中总和最大的区间问题。方法包括三重循环(时间复杂度O(k^3))、两重循环(O(k^2))、分治算法(O(klogk))和正反两遍扫描(O(k))。每种方法都详细说明了其时间和空间效率,并给出了具体实现代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例1.3 总和最大区间问题

给定一个实数序列,设计一个最有效的算法,找到一个总和最大的区间

比如在下面的序列中:

[1.5, -12.3, 3.2, -5.5, 23.2, 3.2, -1.4, -12.2, 34.2, 5.4, -7.8, 1.1, -4.9]

总和最大的区间是从第5个数(23.2)到第10个数(5.4)

方法1,做一次三重循环,其实就是中学里学的排列组合的方法

"""
时间复杂度 = O(k的3次方)
"""


def get_largest_sum_v1(arr):
    length, max_sum, max_range = len(arr), arr[0], (0, 0)
    for left in range(length - 1):
        for right in range(left, length):
            current_sum = sum(arr[left:right + 1])
            if current_sum > max_sum:
                max_sum = current_sum
                max_range = (left, right)
    return max_sum, max_range

方法2:,做两重循环 

"""
时间复杂度 = O(k的2次方)
"""


def get_largest_sum_v2(arr):
    length, max_sum, max_range = len(arr), arr[0], (0, 0)
    for left in range(length - 1):
        current_sum = 0
        for right in range(left, length):
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值