推荐弱光图像增强算法比较《Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior》(附带HEP可执行程序)

本文分享了HEP程序,用于图像增强和弱光增强,对比EnlightenGAN,结果显示HEP在增强效果上优于GAN方法。程序提供预训练模型,用户可通过test_images和NDM_results轻松测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章链接:https://arxiv.org/abs/2112.01766

文章代码:https://github.com/fengzhang427/HEP

文章的具体内容不再做赘述,主要是分享可执行程序,作为大家做图像增强/弱光增强/图像去噪的实验比较内容

这篇文章的效果,我给大家贴图感受一下:

上面一行是EnlightenGAN的效果,下面是HEP的效果,增强效果在这几张图上是强于GAN方法的

这是原图像

具体使用方法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ReedswayYuH.C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值