使用Python和LangChain构建检索增强生成(RAG)应用的详细指南

78 篇文章

已下架不支持订阅

51 篇文章

已下架不支持订阅

使用Python和LangChain构建检索增强生成(RAG)应用的详细指南

引言

在人工智能和自然语言处理领域,利用大语言模型(LLM)构建复杂的问答(Q&A)系统是一个重要应用。检索增强生成(Retrieval Augmented Generation,RAG)是一种技术,通过将模型知识与额外数据结合来增强LLM的能力,使其能够回答关于特定源信息的问题。这些应用不仅限于公开数据,还可以处理私有数据和模型截止日期之后引入的数据。本文将详细介绍如何使用Python和LangChain构建一个强大的RAG应用,帮助读者实现复杂的Q&A系统。

什么是RAG?

RAG是一种技术,用于增强LLM的知识,使其能够处理额外的数据。尽管LLM能够处理广泛的话题,但其知识仅限于训练时所用的公共数据,且截至时间有限。如果希望构建能够处理私有数据或模型截止日期之后的数据的AI应用,就需要通过RAG来增强模型的知识。具体来说,RAG通过检索相关信息并将其插入到模型提示中,从而实现这一目标。

LangChain提供了一系列组件,旨在帮助构建Q&A应用和更广泛的RAG应用。本文将重点介绍处理非结构化数据的Q&A技术。

RAG应用的基本概念

一个典型的RAG应用包括两个主要部分:

  1. 索引:从源中获取数据并进行索引的流水线,通常离线执行。
  2. 检索和生成:实际的R

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_57781768

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值