一、环境配置与准备(Ubuntu 22.04)
1.下载Dropgaussian的源码
首先,把DropGaussian的仓库clone到本地,github仓库如下:https://github.com/ueoo/DropGaussianhttps://github.com/ueoo/DropGaussian可以去下载压缩包,也可以直接git clone
git clone https://github.com/ueoo/DropGaussian.git
2.安装CUDA
这里作者要求使用CUDA12.1,最好就是12.1,更高版本的我也没尝试,所以大家要确定一下自己的CUDA版本,可以使用nvcc --version确定
nvcc --version
3.使用conda配置环境和依赖
这里需要根据你clone下来的路径去配置conda环境,要求切换到包含environment.yaml的位置
cd DropGaussian.git
conda env create --file environment.yaml
conda activate DropGaussian
这里可能会遇到pip install 安装diff-gaussian-rasterization和simple-knn的错误,解决方法是先安装其他依赖,然后单独安装这两个依赖,使用下面的命令
conda activate DropGaussian
cd /DropGaussian/submodules/diff-gaussian-rasterization # 这里要改成你自己相对应的目录
python setup.py install
cd /DropGaussian/submodules/simple-knn # 这里要改成你自己相对应的目录
python setup.py install
4.下载数据集
mkdir dataset
cd dataset
# Download LLFF dataset
gdown 16VnMcF1KJYxN9QId6TClMsZRahHNMW5g
# Generate sparse point cloud using COLMAP (limited views) for LLFF
python tools/colmap_llff.py
# Download MipNeRF-360 dataset
wget http://storage.googleapis.com/gresearch/refraw360/360_v2.zip
unzip -d mipnerf360 360_v2.zip
# Generate sparse point cloud using COLMAP (limited views) for MipNeRF-360
python tools/colmap_360.py
这里我只下载了mipnerf360数据
在执行python tools/colmap_360.py生成稠密点云时我遇到很多问题,暂时未解决
需要注意的是这里下载的只包含稠密点云fused.ply文件,要想使用还需要我们将其复制到指定的位置,比如我们要使用bicycle场景进行训练,渲染等。需要把下载的预处理好的/24_views/dense/fused.ply复制到原始mipnerf360/bicycle目录下,如下图所示
二、训练
要在单个 MipNeRF-360 场景上进行训练,请使用以下命令:
python train.py -s ${DATASET_PATH} -m ${OUTPUT_PATH} --eval -r 8 --n_views {12 or 24}
${DATASET_PATH}要精确到数据集中的具体场景(/bicycle),${OUTPUT_PATH}需要自己指定一个位置,看自己觉得哪里方便
要在所有 MipNeRF-360 场景上进行训练和评估,只需运行以下脚本:
bash scripts/train_mipnerf360.sh
执行命令开始训练即可,训练结果会保存在指定output目录中,包含高斯点云数据(point_cloud.ply)训练参数配置(cfg_args)等。
point_cloud.ply # 高斯点云数据

三、渲染和评估
python render.py -s -m ${MODEL_PATH} --eval -r 8
渲染评估过程会默认对训练集相机和测试集相机分别进行渲染和评估,测试集相机数量24,训练集相机数量25分别对应两个渲染过程。
以上就是DropGaussian的简单复现过程