专栏八:五种打分算法合辑

本文介绍了如何根据不同的数据选择合适的打分算法,详细阐述了在R语言环境下,从基因集合的创建到使用特定R包进行打分、结果整理和可视化的全过程,尤其以单细胞数据作为示例进行实战应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

其实不同的打分算法偏好不太一样 应该视数据而定

1.制作基因集合:是一个list,并且list下是基因集的命名

## 制作
geneset=read.table('./GTs.txt',header = T,check.names = F,sep = '\t')
geneset=list(geneset$GT)
names(geneset)='GTs'

gc()

 2.R包

library(Seurat)
library(SeuratData)
library(UCell)
library(irGSEA)
library(AUCell) ## 版本需要大于1.14

3.打分 以单细胞数据为例

## 1. AUCell 
cells_rankings <- AUCell_buildRankings(scRNA@assays$RNA@data,  
                                       nCores=1, 
                                       plotStats=TRUE) 

gc()


cells_AUC <- AUCel
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

18kkk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值