新增道路查询后的最短距离 II
题目描述
给你一个整数 n
和一个二维整数数组 queries
。
有 n
个城市,编号从 0
到 n - 1
。初始时,每个城市 i
都有一条单向道路通往城市 i + 1
(0 <= i < n - 1
)。
queries[i] = [ui, vi]
表示新建一条从城市 ui
到城市 vi
的单向道路。每次查询后,你需要找到从城市 0
到城市 n - 1
的最短路径的长度。
所有查询中不会存在两个查询都满足 queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1]
。
返回一个数组 answer
,对于范围 [0, queries.length - 1]
中的每个 i
,answer[i]
是处理完前 i + 1
个查询后,从城市 0
到城市 n - 1
的最短路径的长度。
示例 1:
输入:
n = 5, queries = [[2, 4], [0, 2], [0, 4]]
输出:
[3, 2, 1]
解释:
- 新增一条从
2
到4
的道路后,从0
到4
的最短路径长度为3
。 - 新增一条从
0
到2
的道路后,从0
到4
的最短路径长度为2
。 - 新增一条从
0
到4
的道路后,从0
到4
的最短路径长度为1
。
示例 2:
输入:
n = 4, queries = [[0, 3], [0, 2]]
输出:
[1, 1]
解释:
- 新增一条从
0
到3
的道路后,从0
到3
的最短路径长度为1
。 - 新增一条从
0
到2
的道路后,从0
到3
的最短路径长度仍为1
。
提示:
3 <= n <= 10^5
1 <= queries.length <= 10^5
queries[i].length == 2
0 <= queries[i][0] < queries[i][1] < n
1 < queries[i][1] - queries[i][0]
- 查询中不存在重复的道路。
- 不存在两个查询都满足
i != j
且queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1]
。
解题思路
本题由于数据规模较大,要求我们在动态添加道路时高效地计算最短路径。因此,采用 并查集 来处理路径的合并问题。
思路详解
-
并查集初始化:
- 因为这题初始时已经都有边了,再用每个点做并查集那么就是一阵个集合,不可行
- 所以重点看边,把平时的点转移到这题的边上,共有n-1个点(就是图中的n-1条边),刚开始每个节点的父亲都是自己,当有一条查询[2,5],即可转化为,把点2,3都跟4连接。
- 每次统计一下图中有多少联通块即可
-
路径压缩:
- 使用路径压缩优化并查集的查找操作,提高效率。
代码实现
以下是 C++ 的代码实现:
class Solution {
public:
vector<int> shortestDistanceAfterQueries(int n, vector<vector<int>>& queries) {
vector<int> fa(n - 1); // 并查集初始化
for (int i = 0; i < n - 1; i++) fa[i] = i;
// 并查集查找
function<int(int)> find = [&](int x) -> int {
if (x != fa[x]) {
fa[x] = find(fa[x]); // 路径压缩
}
return fa[x];
};
vector<int> res; // 存储结果
int cnt = n - 1; // 初始化路径数量
for (auto& c : queries) {
int x = c[0], y = c[1] - 1; // 查询的起点和终点
int fr = find(y); // 找到终点的根节点
// 合并 [x, y) 的所有节点
for (int i = find(x); i < y; i = find(i + 1)) {
fa[i] = fr; // 合并到终点的根节点
cnt--; // 路径数量减少
}
res.push_back(cnt); // 记录当前最短路径长度
}
return res;
}
};