新增道路查询后的最短距离 II

新增道路查询后的最短距离 II

题目描述

给你一个整数 n 和一个二维整数数组 queries

n 个城市,编号从 0n - 1。初始时,每个城市 i 都有一条单向道路通往城市 i + 10 <= i < n - 1)。

queries[i] = [ui, vi] 表示新建一条从城市 ui 到城市 vi 的单向道路。每次查询后,你需要找到从城市 0 到城市 n - 1 的最短路径的长度。

所有查询中不会存在两个查询都满足 queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1]

返回一个数组 answer,对于范围 [0, queries.length - 1] 中的每个 ianswer[i] 是处理完前 i + 1 个查询后,从城市 0 到城市 n - 1 的最短路径的长度。


示例 1:

输入:
n = 5, queries = [[2, 4], [0, 2], [0, 4]]

输出:
[3, 2, 1]

解释:

  1. 新增一条从 24 的道路后,从 04 的最短路径长度为 3
  2. 新增一条从 02 的道路后,从 04 的最短路径长度为 2
  3. 新增一条从 04 的道路后,从 04 的最短路径长度为 1

示例 2:

输入:
n = 4, queries = [[0, 3], [0, 2]]

输出:
[1, 1]

解释:

  1. 新增一条从 03 的道路后,从 03 的最短路径长度为 1
  2. 新增一条从 02 的道路后,从 03 的最短路径长度仍为 1

提示:

  • 3 <= n <= 10^5
  • 1 <= queries.length <= 10^5
  • queries[i].length == 2
  • 0 <= queries[i][0] < queries[i][1] < n
  • 1 < queries[i][1] - queries[i][0]
  • 查询中不存在重复的道路。
  • 不存在两个查询都满足 i != jqueries[i][0] < queries[j][0] < queries[i][1] < queries[j][1]

解题思路

本题由于数据规模较大,要求我们在动态添加道路时高效地计算最短路径。因此,采用 并查集 来处理路径的合并问题。

思路详解

  1. 并查集初始化

    • 因为这题初始时已经都有边了,再用每个点做并查集那么就是一阵个集合,不可行
    • 所以重点看边,把平时的点转移到这题的边上,共有n-1个点(就是图中的n-1条边),刚开始每个节点的父亲都是自己,当有一条查询[2,5],即可转化为,把点2,3都跟4连接。
    • 每次统计一下图中有多少联通块即可
  2. 路径压缩

    • 使用路径压缩优化并查集的查找操作,提高效率。

代码实现

以下是 C++ 的代码实现:

class Solution {
public:
    vector<int> shortestDistanceAfterQueries(int n, vector<vector<int>>& queries) {
        vector<int> fa(n - 1);  // 并查集初始化
        for (int i = 0; i < n - 1; i++) fa[i] = i;

        // 并查集查找
        function<int(int)> find = [&](int x) -> int {
            if (x != fa[x]) {
                fa[x] = find(fa[x]);  // 路径压缩
            }
            return fa[x];
        };

        vector<int> res;  // 存储结果
        int cnt = n - 1;  // 初始化路径数量

        for (auto& c : queries) {
            int x = c[0], y = c[1] - 1;  // 查询的起点和终点
            int fr = find(y);  // 找到终点的根节点

            // 合并 [x, y) 的所有节点
            for (int i = find(x); i < y; i = find(i + 1)) {
                fa[i] = fr;  // 合并到终点的根节点
                cnt--;  // 路径数量减少
            }

            res.push_back(cnt);  // 记录当前最短路径长度
        }

        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值