水果成篮3️⃣
本题给你两个数组fruits和baskets,对于fruits种的每个数,找到baskets中第一个大于等于fruits的值,然后baskets的该下标作废,最后返回有多少个fruit找不到对应的baskets。
用线段树维护区间最大值,然后对于每个fruits进行查询,重点是查询最左边的值。
class Solution {
int N = (int) (1e5 + 10);
Node[] tr = new Node[4 * N];
class Node {
int l, r;
int val;
}
void build(int u, int l, int r, int[] baskets) {
tr[u] = new Node();
tr[u].l = l;
tr[u].r = r;
tr[u].val = 0;
if (l == r) {
tr[u].val = baskets[l - 1];
return;
}
int mid = l + r >> 1;
build(u << 1, l, mid, baskets);
build(u << 1 | 1, mid + 1, r, baskets);
tr[u].val = Math.max(tr[u << 1].val, tr[u << 1 | 1].val);
}
int query(int u, int l, int r, int val) {
// 如果当前节点的值小于要查询的值,直接返回0
if (tr[u].val < val) {
return 0;
}
// 如果当前节点区间完全在查询区间外,返回0
if (tr[u].r < l || tr[u].l > r) {
return 0;
}
// 如果是叶子节点且值满足条件
if (tr[u].l == tr[u].r) {
int pos = tr[u].l;
tr[u].val = -1; // 标记为已使用
return pos;
}
int res = 0;
int mid = (tr[u].l + tr[u].r) >> 1;
// 先尝试左子树
if (tr[u << 1].val >= val && l <= mid) {
res = query(u << 1, l, Math.min(r, mid), val);
}
// 如果左子树没找到结果且右子树可能有解,尝试右子树
if (res == 0 && tr[u << 1 | 1].val >= val && r > mid) {
res = query(u << 1 | 1, Math.max(l, mid + 1), r, val);
}
// 更新当前节点的值
tr[u].val = Math.max(tr[u << 1].val, tr[u << 1 | 1].val);
return res;
}
public int numOfUnplacedFruits(int[] fruits, int[] baskets) {
int n = fruits.length;
int m = baskets.length;
int res = n;
build(1, 1, m, baskets);
for (int i = 0; i < n; i++) {
int val = fruits[i];
// 找到第一个大于等于val的位置
int pos = query(1, 1, m, val);
if(pos != 0)res --;
}
return res;
}
}