哈夫曼编码的引出
•不等长编码方法出现的问题:任何一个字符的编码都不能是其它字符编码的前缀(即前缀码特性),否则译码时将产生二义性。那么如何来设i前缀编码呢?利用二又树来进行设计。具体做法是:约定在二叉树中用叶子结点表示字符,从根结点到叶子结点的路径中,左分支表示"0" ,右分支表示"1"那么,从根结点到叶子结点的路径分支所组成的字奇串做为该叶子结点字符的编码,可以证明这样的编码一定是前缀编码,这棵二又树即为编码树。剩下的问题是怎样保证这样的编码树所得到的编码总长度最小?哈天曼提出了解决该问题的方法,由此产生的编码方案称为哈夫曼算法。
算法的构造思想
•以字符的使用频率做权构建一棵哈夫曼树,然后利用哈夫曼树对字符进行编码,俗称哈夫曼编码。具体来讲,是将所要编码的字符作为叶子结点,该字符在文件中的使用频率作为叶子结点的权值,以自底向上的方式、通过执行n-1次的合并”运算后构造出最终所要求的树,即哈夫曼树,它的核心思想是让权值大的叶子离根最近。
•采取的贪心策略:每次从树的集合中取出双亲为0且权值最小的两棵树作为左、右子树,构造一棵新树,新树根结点的权值为其左右孩子结点权之和,将新树插入到树的集合中。
实例
•已知某系统在通信联络中只可能出现8字符,分别为a, b, c, d, e, f, g,h,其使用频率分别为0.05, 0.29, 0.07,0.08, 0.14, 0.23, 0.03, 0.11,试设计哈夫曼编码。
•设权w=(5, 29, 7, 8, 14, 23, 3, 11),n-8,按哈夫曼算法的设计步骤构造一棵哈夫曼编码树,具休过程如下:





(2)
(3)
(4)
(7)
(8)
哈夫曼编码树
算法描述与分析
•采用线性结构实现的算法,其复杂性为O(n2)。
•算法的改进:采用极小堆实现,其复杂性为O(nlogn)