哈夫曼编码

介绍了哈夫曼编码的设计原理及其在通信联络中的应用。通过构建哈夫曼树,利用字符的使用频率进行编码,确保编码的前缀特性,并减少编码总长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

哈夫曼编码的引出

不等长编码方法出现的问题:任何一个字符的编码都不能是其它字符编码的前缀(即前缀码特性),否则译码时将产生二义性。那么如何来设i前缀编码呢?利用二又树来进行设计。具体做法是:约定在二叉树中用叶子结点表示字符,从根结点到叶子结点的路径中,左分支表示"0" ,右分支表示"1"那么,从根结点到叶子结点的路径分支所组成的字奇串做为该叶子结点字符的编码,可以证明这样的编码一定是前缀编码,这棵二又树即为编码树。剩下的问题是怎样保证这样的编码树所得到的编码总长度最小?哈天曼提出了解决该问题的方法,由此产生的编码方案称为哈夫曼算法。
算法的构造思想
以字符的使用频率做权构建一棵哈夫曼树,然后利用哈夫曼树对字符进行编码,俗称哈夫曼编码。具体来讲,是将所要编码的字符作为叶子结点,该字符在文件中的使用频率作为叶子结点的权值,以自底向上的方式、通过执行n-1次的合并”运算后构造出最终所要求的树,即哈夫曼树,它的核心思想是让权值大的叶子离根最近。
采取的贪心策略:每次从树的集合中取出双亲为0且权值最小的两棵树作为左、右子树,构造一棵新树,新树根结点的权值为其左右孩子结点权之和,将新树插入到树的集合中。
实例
已知某系统在通信联络中只可能出现8字符,分别为a, b, c, d, e, f, g,h,其使用频率分别为0.05, 0.29, 0.07,0.08, 0.14, 0.23, 0.03, 0.11,试设计哈夫曼编码。
设权w=(5, 29, 7, 8, 14, 23, 3, 11),n-8,按哈夫曼算法的设计步骤构造一棵哈夫曼编码树,具休过程如下:

 

(2)(3)(4)

(7)

(8)

                                                                哈夫曼编码树

算法描述与分析

采用线性结构实现的算法,其复杂性为O(n2)。
算法的改进:采用极小堆实现,其复杂性为O(nlogn)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值