
深度学习系列—基于pytorch实现
文章平均质量分 67
学习基础深度学习的知识,以pytorch为框架进行学习深度学习相关的基础知识以及解决办法。
不会学AI
接目标检测相关实验代跑(yolo系列、RTDETR、DEIM),需要请私信。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
低照度图像增强网络——EnlightenGAN
EnlightenGAN是一种用于低照度图像增强的无监督生成对抗网络。它能够在没有成对训练数据的情况下,通过利用输入图像本身的信息来进行自我正则化,从而实现图像的增强。这种方法特别适用于那些难以获取大量成对低照度和正常光照图像的场景。一、原创 2024-10-07 21:44:51 · 1787 阅读 · 6 评论 -
循环生成对抗网络——CycleGAN
CycleGAN(循环生成对抗网络)是一种用于图像到图像的转换的深度学习模型,由Jun-Yan Zhu等人在2017年提出。它能够在没有成对训练样本的情况下,实现两个图像域之间的转换。例如,它可以将马的图片转换为斑马的样式,或者将夏天的照片转换成冬天的场景。原创 2024-10-04 17:44:02 · 912 阅读 · 0 评论 -
GAN生成对抗网络介绍
生成对抗网络(Generative Adversarial Networks,简称GANs)是由Ian Goodfellow等人在2014年提出的一种深度学习模型。它由两部分组成:生成器(Generator)和判别器(Discriminator),两者在训练过程中相互竞争,从而提高生成数据的质量和判别数据真伪的能力。一、GAN是什么?Generative Adversarial Networks ,生成对抗网络是一种深度学习模型。原创 2024-10-04 16:37:42 · 836 阅读 · 0 评论 -
深度学习数据增强的常用方法
数据增强是一种在深度学习中常用的技术,它通过生成新的训练样本来扩展现有的数据集。这一过程通常涉及对原始数据进行一系列变换,如旋转、缩放、裁剪、翻转、颜色调整等,从而创建出与原始数据略有不同的新样本。原创 2024-10-03 14:53:08 · 758 阅读 · 0 评论