最近很多同学问我 AI 工程师如何快速成长?今天就整理了这份 AI 工程师成长路线图,记得收藏,慢慢看。
下文我们对每个部分的学习资料整理给大家。
一、AI 工程师成长路线的学习资料整理
1、掌握 Python
当许多人忙于编写代码时,那些拥有扎实编程基础的人总是脱颖而出。
Python 是 AI 社区的语言,而哈佛大学的 CS50p 是学习它的最佳场所。
课程链接 →
https://pll.harvard.edu/course/cs50s-introduction-programming-python
2、Python 与 AI
一旦你掌握了基础知识,就是时候了解 Python 在 AI 中的使用了。
吴恩达的这个4小时课程是一个很好的起点。
课程链接 →
https://www.deeplearning.ai/short-courses/ai-python-for-beginners/
3、机器学习与数学
每当你感觉遇到困难,数学成为障碍时,Khan Academy 的这些 YouTube 播放列表是金矿。
无需一次完成,可以在你的学习过程中观看。
线性代数 →
https://www.youtube.com/playlist?list=PLFD0EB975BA0CC1E0
概率 →
https://www.youtube.com/playlist?list=PLC58778F28211FA19
统计学 →
https://www.youtube.com/playlist?list=PL1328115D3D8A2566
4、理解大语言模型(LLM)
3Blue1Brown的这四个视频可以说是 LLM 及其内部工作的最佳视觉解释。
-
LLM 如何工作;
-
Transformer 深入解析;
-
Transformer 中的注意力机制;
-
LLM 如何存储事实。
在 YouTube 上观看 →
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
5、LLM 研究
现在你理解了 LLM 是什么,是时候学习如何自己构建它们了。
这是世界上最好的老师的最伟大的系列。
安德烈·卡帕西的神经网络从零到英雄。
在 YouTube 上观看 →
https://www.youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ
6、AI 智能体
在跳入 AI 智能体之前,每个人都应该阅读 Anthropic AI 关于构建有效 AI 智能体的指南。
“你不需要复杂的框架或库,而是需要可组合的模式”。
查看 Anthropic 的指南 →
https://www.anthropic.com/engineering/building-effective-agents
7、应用 AI
我们不推荐追逐框架,但我们在开始时参加了 CrewAI 的这个课程。它清晰、实用,并教你像人类一样思考 AI 智能体的协作。
在这里观看这个课程 →
https://www.coursera.org/projects/multi-ai-agent-systems-with-crewai
8、AI 协议(MCP)
现在你理解了 AI 智能体是什么,是时候将它们连接到工具、API 和数据库了。
发布了这个免费的 MCP 实践指南,包含10多个项目(40,000+下载)。
在 Google Drive 上访问 →
https://drive.google.com/file/d/1a0OMR6NKTY-R2ZeLJVnDimkmTauarXPB/view
9、基于项目的学习
这个 GitHub 仓库包含75+个 AI 工程项目。
一切都是100%开源的!
GitHub 仓库 →
https://github.com/patchy631/ai-engineering-hub
10、书籍
《AI 工程师》Chip Huyen →
https://github.com/chiphuyen/aie-book
《AI 智能体图解指南》,包含12个实践项目 →
https://drive.google.com/file/d/1Th8mN_IF7Ttc8bI_OLtUuQ7Mjx3aJ6Hi/view
总结一下,AI 工程师成长路线图涵盖了以下内容:
编程(Python)、数学、LLM 基础、构建 LLM/LLM 研究、AI 智能体和应用 AI、AI 协议、AI 工程项目、书籍等。
永远不要追逐框架,因为它们来来去去,变化很快!
掌握基础最重要!!
一直在更新,完整的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇
二、如何学习 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一直在更新,更多的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇
01.大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
02.如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。