大模型面试必考:RAG技术原理与高频题型解析

图片

**1.**什么是RAG?为什么比纯生成模型更有优势?

RAG(检索增强生成)技术通过整合检索系统(如向量数据库)与大语言模型(LLM)构建协同工作流,其标准处理流程包含三个关键步骤:首先接收用户查询请求,随后检索相关文档片段,最后将这些检索结果作为上下文输入LLM生成最终响应。

优势:
✅ 解决LLM的知识幻觉数据时效性问题
✅ 降低模型微调成本,动态更新知识库
✅ 生成结果可追溯(引用来源)

2. 描述RAG的完整工作流程

  1. 索引阶段(Indexing):

    • 文档加载 → 文本分块(Chunking)→ 向量化(Embedding)→ 存储到向量数据库
  2. 查询阶段(Query):

    • 用户提问 → 向量化 → 检索Top-K相关文档 → 合并文档为上下文 → 输入Prompt模板 → LLM生成答案

3. 文本分块(Chunking)有哪些策略?如何选择分块大小?

策略: 固定长度分块、按句子/段落分割、重叠窗口(如256 token分块 + 32 token重叠)

选择依据:

✅ 文档类型(法律文本需大块,对话用小块)
✅ 模型上下文长度(如GPT-4最大128K)
✅ 检索精度 vs 计算成本权衡

4. 如何选择Embedding模型?

  • 开源模型:BGE、text2vec
  • 商业API:OpenAI text-embedding-ada-002
  • 关键指标:

✅ MTEB榜单排名(检索、聚类等任务)
✅ 多语言支持
✅ Embedding维度(常用768或1536维)

5. 主流向量数据库对比(Faiss vs Pinecone vs Milvus)

数据库特点适用场景
Faiss本地运行,高吞吐中小规模数据集
Pinecone全托管服务,自动扩缩容生产级云部署
Milvus分布式架构,支持多模态超大规模知识库

** **

6. 如何提升RAG的召回率?

检索优化:

✅ 多查询扩展(HyDE:用LLM生成假设答案再检索)
✅ 混合检索:向量搜索 + 关键词搜索(BM25)
✅ 重排序(Re-ranking):用Cross-Encoder对Top-K结果精排

嵌入优化:

✅ 微调Embedding模型适配领域数据

7. RAG的答案不准如何排查?

按流程逐层排查:
1️⃣ 检索模块:检查召回文档的相关性(MRR指标)
2️⃣ 生成模块:验证Prompt设计是否清晰传递上下文
3️⃣ 分块策略:查看分块是否割裂关键信息
4️⃣ Embedding模型:领域数据是否分布偏移

** **

8. 如何解决长上下文中的“中间丢失”问题?

策略1:Map-Reduce(分别处理各分块再汇总)**
**

策略2:Sentence Window Retrieval

✅ 检索时返回目标句子的前后扩展窗口

策略3:Auto-merging Retrieval(动态合并相关分块)

9. RAG如何与微调(Fine-tuning)结合?

两阶段方案:

  1. 用检索数据训练适配器(如LoRA)

  2. 推理时在Prompt中注入检索结果

    **
    **

代表技术:
✅ RAFT(检索增强的微调)
✅ REALM(联合训练检索器和生成器)

** **

10. 设计一个支持多源知识库的RAG系统

核心组件:

class MultiSourceRAG:
    def __init__(self):
        self.dbs = {  # 多数据库路由
           "manual": faiss_index1,
           "api_docs": pinecone_index2  
        }

    def retrieve(self, query, source):
        # 根据来源选择DB → 检索 → 重排序

    def generate(self, query, context):
        # 动态Prompt模板:f"参考{source}文档:{context}\n回答:"

优化点:
✅ 各知识库独立Embedding模型
✅ 缓存高频查询结果

** **

11. RAG的评估指标有哪些?

指标含义
Hit Rate @K前K个结果中包含正确答案的比率
MRR(平均倒数排名)正确答案排名的倒数的平均值
NDCG考虑排序位置的加权相关性得分
FaithfulnessLLM生成内容是否忠实于检索到的上下文

大模型未来如何发展?普通人能从中受益吗?

在科技日新月异的今天,大模型已经展现出了令人瞩目的能力,从编写代码到医疗诊断,再到自动驾驶,它们的应用领域日益广泛。那么,未来大模型将如何发展?普通人又能从中获得哪些益处呢?

通用人工智能(AGI)的曙光:未来,我们可能会见证通用人工智能(AGI)的出现,这是一种能够像人类一样思考的超级模型。它们有可能帮助人类解决气候变化、癌症等全球性难题。这样的发展将极大地推动科技进步,改善人类生活。

个人专属大模型的崛起:想象一下,未来的某一天,每个人的手机里都可能拥有一个私人AI助手。这个助手了解你的喜好,记得你的日程,甚至能模仿你的语气写邮件、回微信。这样的个性化服务将使我们的生活变得更加便捷。

脑机接口与大模型的融合:脑机接口技术的发展,使得大模型与人类的思维直接连接成为可能。未来,你可能只需戴上头盔,心中想到写一篇工作总结”,大模型就能将文字直接投影到屏幕上,实现真正的心想事成。

大模型的多领域应用:大模型就像一个超级智能的多面手,在各个领域都展现出了巨大的潜力和价值。随着技术的不断发展,相信未来大模型还会给我们带来更多的惊喜。赶紧把这篇文章分享给身边的朋友,一起感受大模型的魅力吧!

那么,如何学习AI大模型?

在一线互联网企业工作十余年里,我指导过不少同行后辈,帮助他们得到了学习和成长。我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑。因此,我坚持整理和分享各种AI大模型资料,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频。在这里插入图片描述

学习阶段包括:

1.大模型系统设计
从大模型系统设计入手,讲解大模型的主要方法。包括模型架构、训练过程、优化策略等,让读者对大模型有一个全面的认识。

在这里插入图片描述

2.大模型提示词工程
通过大模型提示词工程,从Prompts角度入手,更好发挥模型的作用。包括提示词的构造、优化、应用等,让读者学会如何更好地利用大模型。

在这里插入图片描述

3.大模型平台应用开发
借助阿里云PAI平台,构建电商领域虚拟试衣系统。从需求分析、方案设计、到具体实现,详细讲解如何利用大模型构建实际应用。

在这里插入图片描述

4.大模型知识库应用开发
以LangChain框架为例,构建物流行业咨询智能问答系统。包括知识库的构建、问答系统的设计、到实际应用,让读者了解如何利用大模型构建智能问答系统。
在这里插入图片描述

5.大模型微调开发
借助以大健康、新零售、新媒体领域,构建适合当前领域的大模型。包括微调的方法、技巧、到实际应用,让读者学会如何针对特定领域进行大模型的微调。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.SD多模态大模型
以SD多模态大模型为主,搭建文生图小程序案例。从模型选择、到小程序的设计、到实际应用,让读者了解如何利用大模型构建多模态应用。
在这里插入图片描述

7.大模型平台应用与开发
通过星火大模型、文心大模型等成熟大模型,构建大模型行业应用。包括行业需求分析、方案设计、到实际应用,让读者了解如何利用大模型构建行业应用。

在这里插入图片描述
在这里插入图片描述

学成之后的收获👈

全栈工程实现能力:通过学习,你将掌握从前端到后端,从产品经理到设计,再到数据分析等一系列技能,实现全方位的技术提升。

解决实际项目需求:在大数据时代,企业和机构面临海量数据处理的需求。掌握大模型应用开发技能,将使你能够更准确地分析数据,更有效地做出决策,更好地应对各种实际项目挑战。

AI应用开发实战技能:你将学习如何基于大模型和企业数据开发AI应用,包括理论掌握、GPU算力运用、硬件知识、LangChain开发框架应用,以及项目实战经验。此外,你还将学会如何进行Fine-tuning垂直训练大模型,包括数据准备、数据蒸馏和大模型部署等一站式技能。

提升编码能力:大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握将提升你的编码能力和分析能力,使你能够编写更高质量的代码。

学习资源📚

  1. AI大模型学习路线图:为你提供清晰的学习路径,助你系统地掌握AI大模型知识。
  2. 100套AI大模型商业化落地方案:学习如何将AI大模型技术应用于实际商业场景,实现技术的商业化价值。
  3. 100集大模型视频教程:通过视频教程,你将更直观地学习大模型的技术细节和应用方法。
  4. 200本大模型PDF书籍:丰富的书籍资源,供你深入阅读和研究,拓宽你的知识视野。
  5. LLM面试题合集:准备面试,了解大模型领域的常见问题,提升你的面试通过率。
  6. AI产品经理资源合集:为你提供AI产品经理的实用资源,帮助你更好地管理和推广AI产品。

👉获取方式: 😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费

在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

通过这些资料和阶段性的学习,普通人也可以逐步掌握AI大模型的知识和技能,从而在这个快速发展的领域中找到自己的位置。让我们一起感受大模型的魅力,探索未来的无限可能!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值