点击上方蓝字“小谢取证”一起玩耍
之前推出一篇部署本地大模型教程,但需要网络环境
还是比较受到读者的欢迎,但应读者要求:需要这个模型能够训练,能够结合电子数据取证方向且行业内有些数据是不对外公开的,又因为有些机子是没办法连接外网的。
所以完全离线搭建本地的大模型,还是有必要的。其应用的场景可以是让它训练电子数据取证相关的法律法规,电子数据现场提取的流程规范及鉴定要求,计算机及服务器取证的相关知识点及大比武题解等。
话不多说,接下来我们进入实操。
1.环境准备
(1)Windows10系统及以上的计算机
(2)要求:
1.版本:1.5b,适用于一般文字编辑使用(需要1.1GB空余空间)
2.版本:7b(需要4.3GB空余空间)
3.版本:8b(需要4.6GB空余空间)
(3)网络环境:完全离线 不需要网络。(可先下载到U盘,运行U盘安装包可完全离线)
(4)小谢此次搭建的电脑环境如图
2.部署安装过程:
(1)公众号后台回复deepseek获取网盘下载链接。
(2)安装ollama
1.使用安装包进行安装
2.点击安装会默认安装在C盘,如果需要安装在其他盘符修改下环境变量即可。
3.安装完成后桌面右下角会显示安装完成。点击它会显示该界面
(3)下载模型
根据你的需要,下载模型
我这边以下载8b为例
(4)直接将该文件放到文件夹C:\Users\%username%\.ollama并将其解压到该文件夹下
(5)接下来我们来看看该模型是否解压成功。运行Windows PowerShell
输入命令ollama list 如果列表有显示出来则表示成功
(6)再使用命令ollama run deepseek-r1:8b即可运行
4.命令行界面看起来不友好,接下来是要将该界面进行可视化并我们可以提供资料让他进行学习。
(1)将AnythingLLMDesktop.exe下载并进行安装
(2)安装,点击下一步默认安装即可
(3)在该界面选择模型
(4)再点击下一步
(5)这边我们可以跳过注册
(6)新建一个工作区名称
(7)在这边可以上传文档,让他进行学习
(7)点击该上传按钮后再点击进行上传
(8)上传后全选,点击“Move to Workspace”会自动移到右侧的工作区
(9)再点击保存上传即可
(10)上传完成后,这个图钉图标要把他“钉”起来,该文档才能生效
(11)接下来我们来测试下效果
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。