小白也能读懂的ConvLSTM!(开源pytorch代码)

仅需要网络源码的可以直接跳到末尾即可

1. 算法简介与应用场景

ConvLSTM(卷积长短期记忆网络)是一种结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)优势的深度学习模型。它主要用于处理时空数据,特别适用于需要考虑空间特征和时间依赖关系的任务,如气象预测、视频分析、交通流量预测等。

在气象预测中,ConvLSTM可以根据过去的气象数据(如降水、温度等)预测未来的天气情况。在视频分析中,它可以帮助识别视频中的活动或事件,利用时间序列的连续性和空间信息进行更准确的分析。

2. 算法原理

2.1 LSTM基础

在介绍ConvLSTM之前,先让我们来回归一下什么是长短期记忆网络(LSTM)。LSTM是一种特殊的循环神经网络(RNN),它通过引入门控机制解决了传统RNN在长序列训练中面临的梯度消失和爆炸问题。LSTM单元主要包含三个门:输入门、遗忘门和输出门。这些门控制着信息在单元中的流动,从而有效地记住或遗忘信息。

LSTM的核心公式如下:

  • 遗忘门
    f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)

  • 输入门
    i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi[ht1,xt]+bi)
    C ~ t = tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) C~t=tanh(WC[ht1,xt]+bC)

  • 单元状态更新
    C t = f t ∗ C t − 1 + i t ∗ C ~ t C_t = f_t \ast C_{t-1} + i_t \ast \tilde{C}_t Ct=ftCt1+itC~

### ConvLSTM模型简介 ConvLSTM(卷积长短期记忆网络)结合了传统LSTM的时间依赖性和CNN的空间特征提取能力。这种组合使得ConvLSTM特别适合处理具有时空特性的数据,比如视频帧中的动作识别或气象预报等场景[^1]。 对于人类活动识别的任务而言,HarNet 和 ConvLSTM 的联合使用可以更有效地捕捉到人体姿态变化及时序上的关联性,从而提高分类精度。 ### 应用实例:基于ConvLSTM的人类活动识别 为了展示如何构建并训练一个用于人类活动识别的ConvLSTM模型,在此提供了一个简化版的例子: #### 数据准备阶段 假设已经有了经过预处理的动作序列作为输入数据 `trainX` 及其对应的标签 `trainY` 。这里采用的是三维张量形式表示每个样本 `(samples, timesteps, rows, cols)` ,其中`samples`代表总数量;`timesteps`指代时间步数即每条记录由多少连续时刻组成;而最后两个维度则描述了一定时间段内传感器所感知到的信息分布情况。 #### 构建与编译模型 下面给出一段简单的Python代码来定义这样一个神经网络架构,并对其进行配置以便后续优化求解过程: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import ConvLSTM2D, Flatten, Dense my_model = Sequential() my_model.add(ConvLSTM2D(filters=64, kernel_size=(1, 1), activation='relu', input_shape=(None, 30, 8, 8))) my_model.add(Flatten()) my_model.add(Dense(1)) my_model.compile(loss='mse', optimizer='adam') ``` 这段脚本创建了一个顺序堆叠式的Keras模型对象 `my_model` , 并依次向里面添加了几层不同的组件。首先是带有ReLU激活函数的一维卷积核大小为\(1 \times 1\)、滤波器数目设为64个的ConvLSTM单元;接着是一个展平操作将高维矩阵转换成一维向量;最后一层全连接层用来输出预测值。损失函数选择了均方误差(MSE),同时选用Adam算法来进行梯度下降迭代更新参数权重[^2]。 #### 训练模型 完成上述准备工作之后就可以调用 `.fit()` 方法启动正式的学习流程啦! ```python history = my_model.fit(trainX, trainY, epochs=50) ``` 这一步骤会自动执行指定轮次(`epochs`)内的批量随机梯度上升法(Batch Gradient Descent)直至收敛为止。期间还会返回一些有用的统计指标供我们评估性能表现的好坏程度。 #### 查看模型结构概览 如果想要直观地查看整个计算图的具体构成细节的话,则可以通过如下命令打印出来看看吧~ ```python print(my_model.summary()) ``` 该指令将会输出每一层的主要属性以及总的可训练参数规模等重要信息给用户参考查阅。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值