CF1446C Xor Tree 字典树*

本文解析了如何利用字典树(前缀树)解决E.XorTree问题,通过分析节点间的异或关系,确定最优策略以保留尽可能少的数对,使得所有数对异或值最小。关键在于理解子树结构对异或值的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

link
01字典树,dp, 2100
想了很久才想明白。。总之问题等价于保留尽可能多的数,使只存在一对 ( i , j ) (i, j) (i,j) 对彼此而言异或值都是最小的。
建立字典树,设 f p f_p fp 表示以 p p p 为根的子树最多保留多少个数。对于以 p p p 为根的子树,
1.若它没有子节点(即为叶节点),则f[p]=1;
2.若仅有一个子节点,则f[p]=f[p的子节点];
3.若它有两个子节点,则f[p]=max(f[p的子节点]) + 1;
对于3,如果我们考虑取左子树,则无论任取右子树中的哪一个,左子树的连接方式都不会发生变化,即不会产生新的 ( i , j ) (i, j) (i,j)。而若去另一集合中的2个数,则这两个数一定会产生一对 ( i , j ) (i, j) (i,j),不满足仅有1对的要求。

代码

// Problem: E. Xor Tree
// Contest: Codeforces - Codeforces Round #683 (Div. 2, by Meet IT)
// URL: https://codeforces.com/contest/1447/problem/E
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define ll long long
#define ull unsigned long long
#define LL long long
#define db double
#define ld long double
#define endl '\n'
//#define int long long
const int maxn = 2e5 + 10;
const int maxm = 2e5 + 10;
const int N = 1e3 + 10;
const int P = 998244353;    //998244353
const int INF = 0x3f3f3f3f;
const double EPS=1e-6;
int nxt[maxn*32][2];
int cnt = 1;
void insert(int x) {
	int cur = 1;
	for(int i = 31; i >= 0; i--) {
		if(!nxt[cur][(x>>i)&1]) nxt[cur][(x>>i)&1] = ++cnt;
		cur = nxt[cur][(x>>i)&1];
	}
}
int find(int p) {
	if(!nxt[p][0] && !nxt[p][1]) return 1;
	if(!nxt[p][0]) return find(nxt[p][1]);
	if(!nxt[p][1]) return find(nxt[p][0]);
	return max(find(nxt[p][1]), find(nxt[p][0])) + 1;
}
void solve() {
    int n;
    cin >> n;
    for(int i = 1; i <= n; i++) {
    	int x;
    	cin >> x;
    	insert(x);
    }
    cout << n - find(1) << endl;
}
``` #include<bits/stdc++.h> using namespace std; #define ll long long const int N=3e5+5,M=(1<<21)-1; struct Tree_{ struct Node{ int mi; Node *c[2]; Node():mi(M){c[0]=c[1]=nullptr;} friend Node* ch(Node* a,bool z){ if(a->c[z]==nullptr)a->c[z]=new Node; return a->c[z]; } }; Node *head; Tree_():head(new Node){} void push(int x){ Node *u=head; u->mi=min(u->mi,x); for(int i=20;i>=0;i=(i==0)?-1:i>>1){ u=ch(u,(x&(1<<i))!=0); u->mi=min(u->mi,x); } } int find(int ex,int mi){ Node *u=head; if(u->mi>mi)return M; for(int i=20;i>=0;i=(i==0)?-1:i>>1){ if(ch(u,(ex&(1<<i))!=0)->mi<=mi)u=ch(u,(ex&(1<<i))!=0); else u=ch(u,(ex&(1<<i))==0); } return u->mi; } }; int n,m; Tree_ a[N]; int main(){ ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int T; cin>>T; while(T--){ int op; cin>>op; if(op==1){ int x; cin>>x; for(int i=1;i<=sqrt(x);++i){ if(x%i==0)a[i].push(x),a[x/i].push(x); } }else{ int x,k,s; cin>>x>>k>>s; if(((x/k)*k!=x)||(a[k].find(M^x,s-x)==M))cout<<-1<<endl; else cout<<a[k].find(M^x,s-x)<<endl; } } return 0; }```debug # T591788 数字游戏 ## 题目背景 题目来源:CF979D ## 题目描述 Kuro 正在玩一个关于数字的教育游戏。游戏涉及最大公约数 (GCD)、异或值 (XOR) 和两个数字的和。Kuro 非常喜欢这个游戏,每天都在不断闯关。 由于 Kuro 要外出一天,他请好友 Katie 来帮他继续游戏。游戏开始时有一个空数组 $a$,包含 $q$ 个任务,分为两种类型: 类型 $1$:将数字 $u_i$ 添加到数组 $a$ 中 类型 $2$:在数组 $a$ 中寻找满足以下条件的数字 $v$: - $k_i$ 能整除 $gcd(x_i, v)$,即 $k_i$ 是后者的约数 - $x_i + v ≤ s_i$ - $x_i ⊕ v$ 的值最大($⊕$ 代表按位异或运算) 若不存在这样的数字则返回 $-1$。 ## 输入格式 第一行包含一个整数 $q$ ($2 ≤ q ≤ 10^5$) 代表任务数量。 接下来 $q$ 行,每行描述一个任务,第 $i$ 行以一个整数 $t_i$ 开头: - 如果 $t_i = 1$,则后面接一个整数 $u_i$,你需要将 $u_i$ 加入到数组中。 - 如果 $t_i = 2$,则后面跟着三个整数 $x_i, k_i, s_i$,你需要从数组 $a$ 中找到一个整数 $v$,满足 $k_i$ 能整除 $gcd(x_i, v)$,$x_i + v ≤ s_i$,且 $x_i ⊕ v$ 的值最大。如果不存在这样的 $v$,则输出 $-1$。 ## 输出格式 对于每个类型 $2$ 任务,输出满足条件的数字 $v$ 或 $-1$。 ## 输入输出样例 #1 ### 输入 #1 ``` 5 1 1 1 2 2 1 1 3 2 1 1 2 2 1 1 1 ``` ### 输出 #1 ``` 2 1 -1 ``` ## 输入输出样例 #2 ### 输入 #2 ``` 10 1 9 2 9 9 22 2 3 3 18 1 25 2 9 9 20 2 25 25 14 1 20 2 26 26 3 1 14 2 20 20 9 ``` ### 输出 #2 ``` 9 9 9 -1 -1 -1 ``` ## 说明/提示 【样例 $1$ 解释】 1. 添加 $1$ 到数组 $a$:$\{1\}$ 2. 添加 $2$ 到数组 $a$:$\{1, 2\}$ 3. 查询 $x = 1, k = 1, s = 3$:可选 $v = 1$ 或 $2$,选择 $2$ 因为 $2 ⊕ 1 = 3 > 1 ⊕ 1$ 4. 查询 $x = 1, k = 1, s = 2$:只能选 $v = 1$ 5. 查询 $x = 1, k = 1, s = 1$:无解,返回 $-1$ 【数据规模与约定】 对于所有数据,保证: - $2 ≤ q ≤ 3 × 10^5$; - $1 ≤ u_i ≤ 3 × 10^5$; - $1 ≤ x_i, k_i ≤ 3 × 10^5$; - $1 ≤ s_i ≤ 6 × 10^5$。 对于 $30\%$ 的数据,保证 $q \le 1000$; 另有 $30\%$ 的数据,保证 $u_i, x_i, k_i \le 10^4$。
03-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值