- 博客(11)
- 收藏
- 关注
原创 Qwen1.5-1.8b大模型部署、访问和压力测试项目总结
✅ 请求总数: 50✅ 成功请求: 50❌ 失败请求: 0⏱ 平均响应时间: 15794.64 ms⏱ 最大响应时间: 31537.12 ms⏱ 最小响应时间: 776.55 ms🔢 Token/s 吞吐率: 10.20 tokens/s🔁 每秒请求数 (RPS): 1.59 请求/秒。
2025-03-21 15:07:54
791
原创 基于T5预训练模型的问答模型代码解析(项目总结)
input_seq = f"问题:{item['question']}{tokenizer.sep_token}原文:{item['context']}"output_seq = f"答案:{item['answer']}{tokenizer.eos_token}"解析__init__方法读取 JSON 数据并存入self.data列表,每行是一个字典,包含question(问题)、context(上下文)、answer(答案)。__len__方法返回数据集大小,用于DataLoader迭代。
2025-03-08 21:03:00
1026
1
原创 OpenAI-大语言模型入门 Andrej Karpathy演讲内容
这是我最后的总结,我已经讨论了大型语言模型是什么它们是如何实现的它们是如何训练的。我还谈到了语言模型的前景以及它们未来的发展方向。我还提到了这种新兴计算范式所面临的挑战,以及大量正在进行的工作,当然,这也是一个非常令人兴奋的领域,值得我们继续关注。再见。开放语言建模领域中的第二步等效项是什么?这里的主要挑战 是在一般情况下缺乏奖励标准。因此你无法使用简单的奖励函数来告诉你所做的一切、所采样的一 切是好是坏。不存在易于评估的庞大标准或奖励函数。但事实在狭窄的领域中,这样的奖励函数是可以实现的。
2025-03-02 10:36:18
619
原创 ChatGPT (可能)是怎么炼成的 笔记
GPT真正的输出是一个概率分布,然后从概率分布中抽样一个答案出来但是同一个问题,每次输出都不一样找人来思考想问GPT的问题,并人工提供正确答案,作为预处理的好的数据多看输入人类处理好的内容,不随便从网络上找数据就输入,就是说对输入给chat gpt的数据要经过人类的预处理,确定是好的数据Chat GPT从随机输出答案,到输出人类想让Chat GPT输出的答案
2025-03-02 10:13:17
224
原创 Collaborative Spatial Reuse in Wireless Networks via Selfish Multi-Armed Bandits
开源地址:要运行代码,只需。
2025-02-25 19:43:59
183
原创 情感识别和主题识别文本分类任务实战总结
先用正则表达式把数据和lable分开由于lable中有主题lable和情感lable,需要将lable再单独分为两份,分别为主题lable和情感lable因为是每个主题lable后边有一个情感标签,所以情感lable要采用数字加和的方式得到一个句子整体的情感lable,sum大于0为正向,小于0为负向,0为中性,整体情感lable要使用>0的数字,不然后面计算loss的时候不符合要求,然后将整体情感lable和数据组合起来去做训练数据。
2025-02-23 22:16:49
1006
原创 bert 情感分类结果
C(ctcp) ubuntu@xiegangzu:~/ctcp/Bert-Chinese-Text-Classification-Pytorch-master - 副本$ python run.py --model bert。
2025-02-22 17:30:23
637
Bert-Chinese-Text-Classification-Pytorch-master-副本-副本
2025-02-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人