定理:
∀(a,p)=1,p 为素数,则 ap−1≡1(modp) {\forall}(a,p) = 1, p\,为素数,则\,a^{p-1}\equiv1(mod p) ∀(a,p)=1,p为素数,则ap−1≡1(modp)
证明1:
==完全剩余系:==从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。完全剩余系常用于数论中存在性证明。
举例:一个数除以4的余数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系。可以看出0和4,1和5,2和-2,3和11模4同余,这4组数分别属于4个剩余类。
可以得出 mod p 的完全剩余系(当前和下面的证明过程中,都忽视掉0)为{1,2,3,p-1}
然后我们将它都 * a 得到 {a,2a,(p- 1)a}
这时候我们需要用反证法,证明第二个括号中的数mod p的结果各不相同。
若ai=aj(mod p), 1≤ i,j ≤p−1⇒a(i−j)≡0(mod p)⇒p∣a(i−j)∵1≤ i,j ≤p−1⇒p∤(i−j)∵(a,p)=1⇒p∤a
若ai=aj(mod\;p),\;1\le\,i,j\;\le p-1\\
\Rightarrow a(i-j)\equiv0(mod\;p)\Rightarrow p|a(i - j)\\
\because 1\le\,i,j\;\le p-1 \Rightarrow p \not\mid(i - j) \\
\because (a,p)=1 \Rightarrow p \not\mid a\\
若ai=aj(modp),1≤i,j≤p−1⇒a(i−j)≡0(modp)⇒p∣a(i−j)∵1≤i,j≤p−1⇒p∣(i−j)∵(a,p)=1⇒p∣a
所以假设不成立,所以可以得出第二个括号中的数mod p的结果各不相同,然后根据完全剩余系的定义,可以得出括号二和括号一 一样都是mod p 的完全剩余系。所以可以得出
(p−1)!≡ap−1(p−1)! (mod p)∵p是素数,所以( (p−1)! ,p)=1∴ap−1≡1(mod p)
(p-1)!\equiv a^{p-1}(p-1)!\;(mod\;p)\\
\because p是素数,所以(\;(p-1)!\;,p) = 1\\
\therefore a^{p-1}\equiv1(mod\;p)
(p−1)!≡ap−1(p−1)!(modp)∵p是素数,所以((p−1)!,p)=1∴ap−1≡1(modp)
证明2:
补充:里面那个(pk)是组合数的意思,就是从p个元素里面,不管顺序,不重复选出k个
p为素数,且(a,p)=1,ap−1≡1(mod p)⇔ap≡a(mod p)二项式展开:ap=(1+a−1)p=1+p(a−1)+(pk)(a−k)k+(a−1)p因为二项式的系数都是自然数,即(pk)=p(p−1)...(p−k+1)k!∈N∴k!∣p(p−1)...(p−k+1)又∵k<p,并且p是素数⇒(k!,p)=1⇒k!∣(p−1)...(p−k+1)推到这里可以得出除了第一个和最后一个二项式的展开式外,其他都可以被p整除,因为他们的二项式系数都有一个p∴ap≡1+(a−1)p(mod p)同理ap=(1+a−1)p,也可以=(2+a−2)p,可以=(a+a−a)pap≡2+(a−2)p(mod p).......ap≡a(mod p)∴p∣ap−1⇒p∣a(ap−1−1)∵(a,p)=1⇒p∣ap−1−1⇒ap−1≡1(mod p)
p为素数,且(a,p)=1,a^{p-1}\equiv1(mod\;p)\Leftrightarrow a^p\equiv a(mod\;p)\\
二项式展开:a^p = (1 + a-1)^p=1+p(a-1)+\binom{p}{k}(a-k)^k+(a-1)^{p}\\
因为二项式的系数都是自然数,即\binom{p}{k}=\frac{p(p-1)...(p-k + 1)}{k!}\in N\\
\therefore k!\mid p(p-1)...(p-k+1)\\
又\because k<p,并且p是素数\Rightarrow(k!,p) = 1\Rightarrow k!\mid (p-1)...(p-k+1)\\
推到这里可以得出除了第一个和最后一个二项式的展开式外,其他都可以被p整除,因为他们的二项式系数都有一个p\\
\therefore a^p \equiv1+(a-1)^p(mod \;p)\\
同理a^p = (1 + a-1)^p,也可以=(2+a-2)^p,可以=(a + a - a)^p\\
a^p\equiv2+(a-2)^p(mod\;p)\\
.......\\
a^p \equiv a(mod\;p)\\
\therefore p\mid a^p-1\Rightarrow p \mid a(a^{p-1}-1)\\
\because (a,p) = 1\Rightarrow p \mid a^{p-1}-1\Rightarrow a^{p-1}\equiv1(mod\;p)
p为素数,且(a,p)=1,ap−1≡1(modp)⇔ap≡a(modp)二项式展开:ap=(1+a−1)p=1+p(a−1)+(kp)(a−k)k+(a−1)p因为二项式的系数都是自然数,即(kp)=k!p(p−1)...(p−k+1)∈N∴k!∣p(p−1)...(p−k+1)又∵k<p,并且p是素数⇒(k!,p)=1⇒k!∣(p−1)...(p−k+1)推到这里可以得出除了第一个和最后一个二项式的展开式外,其他都可以被p整除,因为他们的二项式系数都有一个p∴ap≡1+(a−1)p(modp)同理ap=(1+a−1)p,也可以=(2+a−2)p,可以=(a+a−a)pap≡2+(a−2)p(modp).......ap≡a(modp)∴p∣ap−1⇒p∣a(ap−1−1)∵(a,p)=1⇒p∣ap−1−1⇒ap−1≡1(modp)
参考资料:[最美数学系列-什么是费马小定理以及如何证明它?_哔哩哔哩_bilibili](