费马小定理证明

本文介绍了费马小定理的两种证明方法。首先利用完全剩余系的概念通过反证法证明了定理的有效性;其次借助二项式展开,通过一系列逻辑推导,进一步验证了该定理的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理:

∀(a,p)=1,p 为素数,则 ap−1≡1(modp) {\forall}(a,p) = 1, p\,为素数,则\,a^{p-1}\equiv1(mod p) (a,p)=1,pap11(modp)

证明1:

==完全剩余系:==从模n的每个剩余类中各取一个数,得到一个由n个数组成的集合,叫做模n的一个完全剩余系。完全剩余系常用于数论中存在性证明。

举例:一个数除以4的余数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系。可以看出0和4,1和5,2和-2,3和11模4同余,这4组数分别属于4个剩余类。

可以得出 mod p 的完全剩余系(当前和下面的证明过程中,都忽视掉0)为{1,2,3,p-1}

然后我们将它都 * a 得到 {a,2a,(p- 1)a}

这时候我们需要用反证法,证明第二个括号中的数mod p的结果各不相同。
若ai=aj(mod  p),  1≤ i,j  ≤p−1⇒a(i−j)≡0(mod  p)⇒p∣a(i−j)∵1≤ i,j  ≤p−1⇒p∤(i−j)∵(a,p)=1⇒p∤a 若ai=aj(mod\;p),\;1\le\,i,j\;\le p-1\\ \Rightarrow a(i-j)\equiv0(mod\;p)\Rightarrow p|a(i - j)\\ \because 1\le\,i,j\;\le p-1 \Rightarrow p \not\mid(i - j) \\ \because (a,p)=1 \Rightarrow p \not\mid a\\ ai=aj(modp),1i,jp1a(ij)0(modp)pa(ij)1i,jp1p(ij)(a,p)=1pa
所以假设不成立,所以可以得出第二个括号中的数mod p的结果各不相同,然后根据完全剩余系的定义,可以得出括号二和括号一 一样都是mod p 的完全剩余系。所以可以得出
(p−1)!≡ap−1(p−1)!  (mod  p)∵p是素数,所以(  (p−1)!  ,p)=1∴ap−1≡1(mod  p) (p-1)!\equiv a^{p-1}(p-1)!\;(mod\;p)\\ \because p是素数,所以(\;(p-1)!\;,p) = 1\\ \therefore a^{p-1}\equiv1(mod\;p) (p1)!ap1(p1)!(modp)p((p1)!,p)=1ap11(modp)

证明2:

补充:里面那个(pk)是组合数的意思,就是从p个元素里面,不管顺序,不重复选出k个
p为素数,且(a,p)=1,ap−1≡1(mod  p)⇔ap≡a(mod  p)二项式展开:ap=(1+a−1)p=1+p(a−1)+(pk)(a−k)k+(a−1)p因为二项式的系数都是自然数,即(pk)=p(p−1)...(p−k+1)k!∈N∴k!∣p(p−1)...(p−k+1)又∵k<p,并且p是素数⇒(k!,p)=1⇒k!∣(p−1)...(p−k+1)推到这里可以得出除了第一个和最后一个二项式的展开式外,其他都可以被p整除,因为他们的二项式系数都有一个p∴ap≡1+(a−1)p(mod  p)同理ap=(1+a−1)p,也可以=(2+a−2)p,可以=(a+a−a)pap≡2+(a−2)p(mod  p).......ap≡a(mod  p)∴p∣ap−1⇒p∣a(ap−1−1)∵(a,p)=1⇒p∣ap−1−1⇒ap−1≡1(mod  p) p为素数,且(a,p)=1,a^{p-1}\equiv1(mod\;p)\Leftrightarrow a^p\equiv a(mod\;p)\\ 二项式展开:a^p = (1 + a-1)^p=1+p(a-1)+\binom{p}{k}(a-k)^k+(a-1)^{p}\\ 因为二项式的系数都是自然数,即\binom{p}{k}=\frac{p(p-1)...(p-k + 1)}{k!}\in N\\ \therefore k!\mid p(p-1)...(p-k+1)\\ 又\because k<p,并且p是素数\Rightarrow(k!,p) = 1\Rightarrow k!\mid (p-1)...(p-k+1)\\ 推到这里可以得出除了第一个和最后一个二项式的展开式外,其他都可以被p整除,因为他们的二项式系数都有一个p\\ \therefore a^p \equiv1+(a-1)^p(mod \;p)\\ 同理a^p = (1 + a-1)^p,也可以=(2+a-2)^p,可以=(a + a - a)^p\\ a^p\equiv2+(a-2)^p(mod\;p)\\ .......\\ a^p \equiv a(mod\;p)\\ \therefore p\mid a^p-1\Rightarrow p \mid a(a^{p-1}-1)\\ \because (a,p) = 1\Rightarrow p \mid a^{p-1}-1\Rightarrow a^{p-1}\equiv1(mod\;p) p(a,p)=1,ap11(modp)apa(modp):ap=(1+a1)p=1+p(a1)+(kp)(ak)k+(a1)p,(kp)=k!p(p1)...(pk+1)Nk!p(p1)...(pk+1)k<p,p(k!,p)=1k!(p1)...(pk+1)ppap1+(a1)p(modp)ap=(1+a1)p,=(2+a2)p,=(a+aa)pap2+(a2)p(modp).......apa(modp)pap1pa(ap11)(a,p)=1pap11ap11(modp)

参考资料:[最美数学系列-什么是费马小定理以及如何证明它?_哔哩哔哩_bilibili](

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值