之前分享过LLama-Factory微调实战文章,今天Unsloth更适合在硬件资源有限的场景下做微调,它比LLama-Factory更节省GPU显存。
一、环境准备
1)选择3090显卡的即可(如果本地有GPU机器,请用自己的),选择了PyTorch
2)安装Anaconda(AutoDL上已默认安装miniconda3)
Anacoda官网:https://www.anaconda.com/
根据你自己的系统下载对应版本
安装完成后,打开终端(Linux/macOS)或Anaconda Prompt(Windows),输入以下命令创建一个新环境:
(AutoDL上需要做以下操作)
conda create -n llama_factory python=3.10 conda activate llama_factory
3)安装cuda(AutoDL已安装)
参考: https://help.aliyun.com/zh/egs/user-guide/install-a-gpu-driver-on-a-gpu-accelerated-compute-optimized-linux-instance
4)下载数据集
数据集对于微调来说,是很重要的一环,数据集质量的好坏直接决定了你微调的效果。本次实验我用的是一个关于脑筋急转弯的数据集,地址:
https://modelscope.cn/datasets/helloworld0/Brain_teasers
二、安装Unsloth
1)利用conda创建虚拟环境(如果你没有开启jupyter,则需要做这一步)
conda create -n unsloth_env python=3.10conda activate unsloth_env
2)安装Unsloth
pip install unsloth
三、下载Qwen3大模型
此次微调我用的是Qwen3-4B的版本,相对来说参数量不大,而且效果比较好。先用pip安装modelscope模块
pip install modelscope
然后创建目录,并下载模型:
mkdir -p /models/modelscope download --model Qwen/Qwen3-4B --local_dir /models/Qwen3-4B
说明: Qwen3-4B大模型会下载到/models/Qwen3-4B下面
四、微调前的测试
微调之前可以先加载初始模型做推理测试,编写测试脚本befor_train.py,内容如下:
from unsloth import FastLanguageModel
model_name = "/models/Qwen3-4B" # 替换为实际模型路径
max_seq_length = 2048 # 最大上下文长度
dtype = None # 自动选择 float16 或 bfloat16
load_in_4bit = True # 启用 4-bit 量化
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
FastLanguageModel.for_inference(model)
inputs = tokenizer(
["Instruction: 你是脑筋急转弯专家,请回答我的问题:什么东西力气再大也不愿意抗?"], return_tensors="pt"
).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
说明:初次加载模型耗时会很久,耐心等待,看其输出内容对比数据集中的答案,是否有差异。
**五、开始微调**
编写微调的脚本train.py,内容如下:
from unsloth import FastLanguageModel
from trl import SFTTrainer
from transformers import TrainingArguments
from datasets import load_dataset
import torch
# 加载模型
model_name = "/models/Qwen3-4B"
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
# 配置 LoRA
model = FastLanguageModel.get_peft_model(
model,
r=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
lora_alpha=64,
lora_dropout=0.2,
bias="none",
use_gradient_checkpointing=True,
random_state=3407,
)
# 加载和预处理数据集
dataset = load_dataset("json", data_files="/models/datasets/data.json", split="train")
train_prompt_style = """下面是一个脑筋急转弯问题,请提供合适的答案,不需要提供思考过程。
### 指令:
你是一个脑筋急转弯专家,请回答以下问题,不需要提供思考过程。
### 问题:
{}
### 回复:
{}"""
def formatting_prompts_func(examples, eos_token):
inputs = examples["instruction"]
outputs = examples["output"]
texts = []
for inputs, outputs in zip(inputs, outputs):
text = train_prompt_style.format(inputs, outputs) + eos_token # eos token在training的时候必须要加
texts.append(text)
return {
"text": texts,
}
dataset = dataset.map(
formatting_prompts_func,
batched=True,
fn_kwargs={'eos_token': tokenizer.eos_token}, # tokenizer为前面加载model是加载的tokenizer
)
# 配置训练
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=max_seq_length,
args=TrainingArguments(
per_device_train_batch_size=8,
gradient_accumulation_steps=4,
warmup_steps=10,
max_steps=80,
learning_rate=5e-5,
fp16=not torch.cuda.is_bf16_supported(),
bf16=torch.cuda.is_bf16_supported(),
logging_steps=5,
optim="adamw_8bit",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir="outputs",
),
)
# 开始训练
trainer.train()
## 保存LoRA适配器
model.save_pretrained("qwen3_lora_finetuned")
tokenizer.save_pretrained("qwen3_lora_finetuned")
## 保存新模型
model.save_pretrained_merged("/models/Qwen3-4B-Aminglinux", tokenizer, save_method="merged_16bit")
说明:数据集文件路径为:/models/datasets/data.json。脚本中涉及很多微调参数,如果想要详细的参数介绍,可以在文章末尾留言这里就不再详细介绍了。
微调会比较耗时,主要取决你的硬件配置以及脚本中你设定的max_steps参数,这个数值越大,它训练的时间就越久。微调后的模型路径为:/models/Qwen3-4B-Aminglinux
六、微调后推理测试
编写测试脚本after_train.py,内容如下:
from unsloth import FastLanguageModel
max_seq_length = 2048
dtype = None
load_in_4bit = False ##如果显存足够,这里设置为False
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="/models/Qwen3-4B-Aminglinux",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
FastLanguageModel.for_inference(model)
inputs = tokenizer(
["Instruction: 你是脑筋急转弯专家,请回答我的问题:什么东西力气再大也不愿意抗?"], return_tensors="pt"
).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
说明:model_name设置为微调后的大模型路径。