我用unsloth将Qwen3大模型微调成了一个脑筋急转弯专家

之前分享过LLama-Factory微调实战文章,今天Unsloth更适合在硬件资源有限的场景下做微调,它比LLama-Factory更节省GPU显存。

一、环境准备

1)选择3090显卡的即可(如果本地有GPU机器,请用自己的),选择了PyTorch

图片

2)安装Anaconda(AutoDL上已默认安装miniconda3)

Anacoda官网:https://www.anaconda.com/

根据你自己的系统下载对应版本

安装完成后,打开终端(Linux/macOS)或Anaconda Prompt(Windows),输入以下命令创建一个新环境:

(AutoDL上需要做以下操作)

conda create -n llama_factory python=3.10 conda activate llama_factory 

3)安装cuda(AutoDL已安装)

参考: https://help.aliyun.com/zh/egs/user-guide/install-a-gpu-driver-on-a-gpu-accelerated-compute-optimized-linux-instance

4)下载数据集

数据集对于微调来说,是很重要的一环,数据集质量的好坏直接决定了你微调的效果。本次实验我用的是一个关于脑筋急转弯的数据集,地址:

https://modelscope.cn/datasets/helloworld0/Brain_teasers

图片

二、安装Unsloth

1)利用conda创建虚拟环境(如果你没有开启jupyter,则需要做这一步)

conda create -n unsloth_env python=3.10conda activate unsloth_env
2)安装Unsloth
pip install unsloth

三、下载Qwen3大模型

此次微调我用的是Qwen3-4B的版本,相对来说参数量不大,而且效果比较好。先用pip安装modelscope模块

pip install modelscope
然后创建目录,并下载模型:
mkdir -p /models/modelscope download --model Qwen/Qwen3-4B --local_dir /models/Qwen3-4B
说明: Qwen3-4B大模型会下载到/models/Qwen3-4B下面

四、微调前的测试

微调之前可以先加载初始模型做推理测试,编写测试脚本befor_train.py,内容如下:

from unsloth import FastLanguageModel

model_name = "/models/Qwen3-4B"  # 替换为实际模型路径
max_seq_length = 2048  # 最大上下文长度
dtype = None  # 自动选择 float16 或 bfloat16
load_in_4bit = True  # 启用 4-bit 量化

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_name,
    max_seq_length=max_seq_length,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
)

FastLanguageModel.for_inference(model)
inputs = tokenizer(
    ["Instruction: 你是脑筋急转弯专家,请回答我的问题:什么东西力气再大也不愿意抗?"], return_tensors="pt"
).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

说明:初次加载模型耗时会很久,耐心等待,看其输出内容对比数据集中的答案,是否有差异。

**五、开始微调**

编写微调的脚本train.py,内容如下:

from unsloth import FastLanguageModel
from trl import SFTTrainer
from transformers import TrainingArguments
from datasets import load_dataset
import torch
# 加载模型
model_name = "/models/Qwen3-4B"
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_name,
    max_seq_length=max_seq_length,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
)
# 配置 LoRA
model = FastLanguageModel.get_peft_model(
    model,
    r=32,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    lora_alpha=64,
    lora_dropout=0.2,
    bias="none",
    use_gradient_checkpointing=True,
    random_state=3407,
)
# 加载和预处理数据集
dataset = load_dataset("json", data_files="/models/datasets/data.json", split="train")
train_prompt_style = """下面是一个脑筋急转弯问题,请提供合适的答案,不需要提供思考过程。
### 指令:
你是一个脑筋急转弯专家,请回答以下问题,不需要提供思考过程。
### 问题:
{}
### 回复:
{}"""
def formatting_prompts_func(examples, eos_token):
    inputs = examples["instruction"]
    outputs = examples["output"]
    texts = []
    for inputs, outputs in zip(inputs, outputs):
        text = train_prompt_style.format(inputs, outputs) + eos_token # eos token在training的时候必须要加
        texts.append(text)
    return {
        "text": texts,
    }
dataset = dataset.map(
    formatting_prompts_func,
    batched=True,
    fn_kwargs={'eos_token': tokenizer.eos_token}, # tokenizer为前面加载model是加载的tokenizer
)
# 配置训练
trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    train_dataset=dataset,
    dataset_text_field="text",
    max_seq_length=max_seq_length,
    args=TrainingArguments(
        per_device_train_batch_size=8,
        gradient_accumulation_steps=4,
        warmup_steps=10,
        max_steps=80,
        learning_rate=5e-5,
        fp16=not torch.cuda.is_bf16_supported(),
        bf16=torch.cuda.is_bf16_supported(),
        logging_steps=5,
        optim="adamw_8bit",
        weight_decay=0.01,
        lr_scheduler_type="linear",
        seed=3407,
        output_dir="outputs",
    ),
)
# 开始训练
trainer.train()
## 保存LoRA适配器
model.save_pretrained("qwen3_lora_finetuned")
tokenizer.save_pretrained("qwen3_lora_finetuned")
## 保存新模型
model.save_pretrained_merged("/models/Qwen3-4B-Aminglinux", tokenizer, save_method="merged_16bit")

说明:数据集文件路径为:/models/datasets/data.json。脚本中涉及很多微调参数,如果想要详细的参数介绍,可以在文章末尾留言这里就不再详细介绍了。

微调会比较耗时,主要取决你的硬件配置以及脚本中你设定的max_steps参数,这个数值越大,它训练的时间就越久。微调后的模型路径为:/models/Qwen3-4B-Aminglinux

六、微调后推理测试

编写测试脚本after_train.py,内容如下:

from unsloth import FastLanguageModel

max_seq_length = 2048
dtype = None
load_in_4bit = False  ##如果显存足够,这里设置为False

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="/models/Qwen3-4B-Aminglinux",
    max_seq_length=max_seq_length,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
)

FastLanguageModel.for_inference(model)
inputs = tokenizer(
    ["Instruction: 你是脑筋急转弯专家,请回答我的问题:什么东西力气再大也不愿意抗?"], return_tensors="pt"
).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

说明:model_name设置为微调后的大模型路径。

### 使用Unsloth微调Qwen大模型 为了使用UnslothQwen大模型进行微调,需先按照指定方式安装Unsloth库并选择合适的配置来适配本地环境中的CUDA版本。对于特定于CUDA 12.1和PyTorch 2.3.0的设置,命令如下[^1]: ```bash !pip install "unsloth[cu121-torch230] @ git+https://github.com/unslothai/unsloth.git" ``` 完安装之后,针对Qwen模型的选择与准备阶段,可以利用`unsloth`提供的接口加载预训练好的Qwen2-VL模型实例。此过程涉及确认目标硬件兼容性和软件依赖项匹配情况以确保顺利运行[^2]。 具体到微调操作上,Unsloth框架提供了简便的方法来进行这一复杂任务。通过定义数据集路径、调整超参数以及设定优化器选项等步骤实现定制化训练流程。下面是一个简单的Python脚本示例用于展示如何启动基于Qwen的大规模视觉-语言模型(VLM)的微调工作流[^3]: ```python from unsloth import VLMTrainer, QwenVLModelConfig config = QwenVLModelConfig( model_name="qwen2-vl", dataset_path="./path_to_your_dataset", ) trainer = VLMTrainer(config=config) trainer.finetune() ``` 上述代码片段展示了初始化一个名为`QwenVLModelConfig`的对象,并传入必要的参数如模型名称(`model_name`)和自定义的数据集位置(`dataset_path`);接着创建了一个`VLMTrainer`类实例并将之前构建的配置对象作为输入传递给它;最后调用了`finetune()`方法执行实际的微调过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值