1)batch数太小,而类别又比较多的时候,真的可能会导致loss函数震荡而不收敛,尤其是在你的网络比较复杂的时候。
2)随着batchsize增大,处理相同的数据量的速度越快。
3)随着batchsize增大,达到相同精度所需要的epoch数量越来越多。
4)由于上述两种因素的矛盾, Batch_Size 增大到某个时候,达到时间上的最优。
5)由于最终收敛精度会陷入不同的局部极值,因此 Batch_Size 增大到某些时候,达到最终收敛精度上的最优。
6)过大的batchsize的结果是网络很容易收敛到一些不好的局部最优点。同样太小的batch也存在一些问题,比如训练速度很慢,训练不容易收敛等。
7)具体的batch size的选取和训练集的样本数目相关。
8)GPU对2的幂次的batch可以发挥更佳的性能,因此设置成16、32、64、128…时往往要比设置为整10、整100的倍数时表现更优
我在设置BatchSize的时候,首先选择大点的BatchSize把GPU占满,观察Loss收敛的情况,如果不收敛,或者收敛效果不好则降低BatchSize,一般常用16,32,64等。
4、在合理范围内,增大Batch_Size有何好处?
===========================
-
内存利用率提高了,大矩阵乘法的并行化效率提高。
-
跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。
-
在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。
5、 盲目增大 Batch_Size 有何坏处?
=========================
-
内存利用率提高了,但是内存容量可能撑不住了。
-
跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而