大家好,我是 K同学啊!
《深度学习100例》系列在昨天已经完成了第20博客!
这是一个漫长的过程,中途遇到了不少问题,但是也有幸遇见不少优秀的伙伴,这里简单介绍一下这90天做的事情。
1. 深度学习100例-卷积神经网络(CNN)实现MNIST手写数字识别 | 第1天
这篇文章作为《深度学习100例》的首篇文章,我使用了最简单也最经典的案例 – MNIST手写数字识别。极简化了神经网络程序,当然,如何你是一个从来没了接触过深度学习的小白,那我建议你可以先看这个专栏:《小白入门深度学习》
使用的是MNIST数据集,MNIST 手写字符数据集的数字图片是由250个不同职业的人纯手写绘制,其中训练集为60,000张28x28像素灰度图像,测试集为10,000张28x28像素灰度图像,总共10类数字标签。
2. 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
这篇文章中我使用的是CIFAR10数据集,它是一个更接近普适物体的彩色图像数据集。是由Hinton 的学生Alex Krizhevsky 和Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含10 个类别的RGB彩色图片,每个类别有6000个图像。每个图片的尺寸为32×32 ,数据集中一共有50000张训练图片和10000 张测试图片。
3. 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
Fashion-MNIST是一个图像数据集。 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。Fashion-MNIST的大小、格式和训练集/测试集划分与原始的MNIST完全一致。60000/10000的训练测试数据划分,28x28的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码。