二十万字!耗时90天

K同学通过90天完成了深度学习100例系列,涵盖CNN识别MNIST、CIFAR10、Fashion-MNIST、花卉、天气等,还涉及VGG、ResNet、RNN、LSTM、AlexNet、Inception等模型,最后介绍了生成对抗网络(GAN)的手写数字和动漫人物生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是 K同学啊

《深度学习100例》系列在昨天已经完成了第20博客!

这是一个漫长的过程,中途遇到了不少问题,但是也有幸遇见不少优秀的伙伴,这里简单介绍一下这90天做的事情。

1. 深度学习100例-卷积神经网络(CNN)实现MNIST手写数字识别 | 第1天

这篇文章作为《深度学习100例》的首篇文章,我使用了最简单也最经典的案例 – MNIST手写数字识别。极简化了神经网络程序,当然,如何你是一个从来没了接触过深度学习的小白,那我建议你可以先看这个专栏:《小白入门深度学习》

使用的是MNIST数据集,MNIST 手写字符数据集的数字图片是由250个不同职业的人纯手写绘制,其中训练集为60,000张28x28像素灰度图像,测试集为10,000张28x28像素灰度图像,总共10类数字标签。

2. 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天

这篇文章中我使用的是CIFAR10数据集,它是一个更接近普适物体的彩色图像数据集。是由Hinton 的学生Alex Krizhevsky 和Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含10 个类别的RGB彩色图片,每个类别有6000个图像。每个图片的尺寸为32×32 ,数据集中一共有50000张训练图片和10000 张测试图片。

3. 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天

Fashion-MNIST是一个图像数据集。 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。Fashion-MNIST的大小、格式和训练集/测试集划分与原始的MNIST完全一致。60000/10000的训练测试数据划分,28x28的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码。

4. 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值