【深度学习】超分,修复,ResShift Efficient Diffusion Model for Image Super-resolution by Residual Shifting

基于上述动机,我们提出了一个高效的扩散模型,涉及一个更短的马尔可夫链,用于在HR图像和其对应的LR图像之间过渡。马尔可夫链的初始状态收敛到HR图像的近似分布,而最终状态收敛到LR图像的近似分布。为了实现这一点,我们精心设计了一个转换核,逐步移动它们之间的残差。这种方法比现有的基于扩散的SR方法更高效,因为残差信息可以在几十个步骤内快速传递。此外,我们的设计还允许对证据下界进行分析和简洁的表达,简化了训练优化目标的归纳。基于这个构建的扩散核,我们进一步开发了一个高度灵活的噪声调度,控制每一步中残差的移动速度和噪声强度。通过调整其超参数,这个调度促进了恢复结果的保真度-真实性权衡。

  • 我们提出了一个高效的扩散模型用于SR,它通过在推理过程中移动它们之间的残差,从LR图像迭代采样到理想的HR图像。广泛的实验表明,我们的方法在效率方面具有优越性,因为它只需要15个采样步骤就能获得令人满意的结果,超越或至少与当前需要长时间采样过程的基于扩散的SR方法相当。我们恢复结果与现有方法的预览比较如图1所示。
  • 我们为所提出的扩散模型制定了一个高度灵活的噪声调度,使得在过渡过程中对残差的移动和噪声水平进行更精确的控制。

实践

环境

git clone https://github.com/zsyOAOA/ResShift.git

cd ResShift

docker run -it  --net host -v /data/xiedong/ResShift:/data/xiedong/ResShift --gpus all kevinchina/deeplearning:cuda118torch2.1.2 bash

cd /data/xiedong/ResShift

pip install -r requirements.txt




web

python app.py

得到:

### 基于扩散小波方法的图像辨率处理 在计算机视觉和人工智能领域,基于扩散小波的方法用于图像辨率处理是一种有效的方式。扩散小波能够捕捉到数据中的局部结构特征,在多尺度析方面表现出色。 #### 扩散小波单元解析 扩散小波构建了一个框架,使得可以在不同的尺度上表示信号,并且这种表示方式对于噪声具有鲁棒性。具体来说,扩散小波通过定义在一个图上的随机游走过程来构造一组正交基函数。这些基函数可以看作是在不同时间步长下的热核展开项,它们能够在保持全局连通性的前提下突出显示局部变化区域[^1]。 #### 图像辨流程 为了实现图像的辨率重建,该方法通常会经历以下几个核心阶段: - **低频初始化**:首先获取输入低辨率图像对应的高频部缺失但保留了主要轮廓信息的一个初始估计版本; - **细节增强**:接着应用扩散算子迭代更新当前解直到收敛为止;在此过程中逐步引入更多的细粒度纹理直至达到目标质量水平。 - **融合优化**:最后一步则是将上述得到的结果与原始观测相结合并通过最小二乘法或其他准则求得最优解。 ```python import numpy as np from scipy.sparse.linalg import cg def diffusion_wavelet_super_resolution(lr_image, scale_factor=2): """ 使用扩散小波算法提升给定LR图片的质量 参数: lr_image (np.ndarray): 输入的低辨率灰度图像数组. scale_factor (int): 放大倍数,默认为2. 返回: sr_image (np.ndarray): 输出高辨率图像. """ # 初始化HR图像大小并填充平均像素值作为起始猜测 hr_shape = tuple(dim * scale_factor for dim in lr_image.shape[:2]) init_guess = np.full(hr_shape + lr_image.shape[2:], fill_value=np.mean(lr_image)) # 构建拉普拉斯矩阵L以及相应的边界条件向量b L = build_laplacian_matrix(init_guess) b = construct_boundary_vector(lr_image) # 解线性方程组找到最接近原图又满足平滑约束的最佳SR近似 solution, _ = cg(L, b.flatten(), tol=1e-5) return solution.reshape(*hr_shape).astype(np.uint8) # 辅助函数省略... ``` 此代码片段展示了如何利用Python编写一个简单的扩散小波辨率转换器。实际应用场景可能还需要考虑更多因素如颜色通道处理、更复杂的先验模型等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值