绝了,用“yolov8s.pt“模型训练验证码识别,高达95%以上的准确率

本篇文章比较长,请仔细阅读,对你非常有帮助的。 

本次代码全部开源,小白可上手。 

环境准备:

python>=3.08

如果不会装请看这篇文章pycharm 安装虚拟环境,同时指定python版本

安装好python环境和 项目虚拟环境后, 

需要安装下面的一些依赖:

pip install ultralyticspip install torch==2.3.1pip install torchvision==0.18.1pip install onnxruntimepip install onnxpip install labelmepip install labelme2yolo

如果上面的依赖库不好安装或耗时比较久,可以尝试下面方法

图片

训练步骤

1. 收集数据集

2. 进行数据集标注

3. 把标注好的数据集进行转化

4. 进行数据集训练

5. 模型使用

收集数据集我已经通过爬虫脚本收集好了。你们可以直接拉代码使用,代码我会放在文章后面,请继续慢慢阅读

原始图片集

通过网盘分享的文件:images_list

链接: https://pan.baidu.com/s/1uz_P041VlejXKedn58BY6A?pwd=nmv9 提取码: nmv9

图片

数据标注集

1. 用命令启动标注工具labelme

图片

2. 选择原始数据集

    

图片

3. 开启自动保存功能

    点击【文件】-点击【自动保存】

4. 进行图片标注,可以选择多边形或者举行标注

5. 重复完成步骤4, 直到标注完所有图片

然后我们到了下一步

把标注好的数据进行转化为json 文件

转换命令是:

labelme2yolo --json_dir <path/to/images_dir> --val_size 0.1 --test_size 0.1

图片

其中json_dir指定图片文件夹

yolo训练会将图片分为 train(训练集)、val(验证集)、test(测试集) 共3个数据集

val_size 指定val数据集占比 (0.1表示10%)

test_size 指定test数据集占比 (0.1表示10%)

其余为train数据集占比

训练集(Train Set)是模型学习的主要数据来源

验证集(Validation Set)用于在训练过程中评估模型的性能

测试集(Test Set)用于在模型训练完成后进行最终的评估

最终输出下面的文件结构:

图片

上面2个步骤走完了, 下面我们就可以进行模型的训练了

首先建一个py文件夹, 可以命名train.py 或者其它

train.py的代码如下:

from ultralytics import YOLO# yolo提供的预训练模型model = YOLO("yolov8s.pt")
results = model.train(data="E:\git_code\code_model\images\images_json\YOLODataset\dataset.yaml",                      # 最大训练批次                      epochs=100,                      # 使用cpu训练                      device='cpu',       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宁抉择

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值