Dijkstra 算法简易版

Dijkstra 算法简介
Dijkstra 算法是一个经典的单源最短路径算法,用于计算从一个起点到图中所有其他节点的最短路径。适用于边权非负的图(如果有负权重就不能用这个了,要用 Bellman-Ford)。
算法原理(朴素版思路)

  1. 初始化:
    • 设置起点 source 到自己的距离为 0,到其他点为 ∞
    • 用一个 visited 集合记录已确定最短路径的点
  2. 每次从未访问的点中选取当前距离起点最短的那个点 u
  3. 将 u 加入 visited 集合
  4. 更新 u 的邻居节点:
    • 如果 dist[u] + weight(u, v) < dist[v],就更新 dist[v]
  5. 重复步骤 2~4,直到所有点都访问过或没有可更新的点了

时间复杂度

  • 朴素实现(邻接矩阵):O(V²)
  • 优先队列 + 邻接表(堆优化):O((V+E) log V)

图解版:

  • 假设有图:
A --1--> B --2--> C
 \       |
  \--4--> C

起点 A:
A 距离自己 0
B 初始无穷大
C 初始无穷大
第一次:
从 A 出发,更新 B=1,C=4
第二次:
取 B(距离1最小),从 B 更新 C:
C = min(4, 1+2) = 3
第三次:
剩下 C,访问完成
最终:
A 到 B 距离 1
A 到 C 距离 3

C++代码示例(堆优化版)

#include <iostream>
#include <vector>
#include <queue>
#include <utility>
using namespace std;

const int INF = 1e9;
typedef pair<int, int> P; // first: distance, second: node

void dijkstra(int start, vector<vector<P>>& graph, vector<int>& dist) {
    priority_queue<P, vector<P>, greater<P>> pq;
    dist[start] = 0;
    pq.push({0, start});

    while (!pq.empty()) {
        auto [d, u] = pq.top();
        pq.pop();

        if (d > dist[u]) continue;

        for (auto [v, w] : graph[u]) {
            if (dist[v] > dist[u] + w) {
                dist[v] = dist[u] + w;
                pq.push({dist[v], v});
            }
        }
    }
}

int main() {
    int V = 5;
    vector<vector<P>> graph(V);
    graph[0].push_back({1, 10});
    graph[0].push_back({2, 3});
    graph[1].push_back({2, 1});
    graph[1].push_back({3, 2});
    graph[2].push_back({1, 4});
    graph[2].push_back({3, 8});
    graph[2].push_back({4, 2});
    graph[3].push_back({4, 7});
    graph[4].push_back({3, 9});

    vector<int> dist(V, INF);
    dijkstra(0, graph, dist);

    for (int i = 0; i < V; ++i) {
        cout << "Distance from 0 to " << i << ": " << dist[i] << endl;
    }

    return 0;
}

C++11 多线程 Dijkstra 核心实现

#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
#include <climits>
#include <mutex>
#include <thread>

using namespace std;

unordered_map<int, int> dist;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> pq;
unordered_map<int, vector<pair<int, int>>> graph;

mutex pq_mutex, dist_mutex;

void relax(int u) {
    for (auto [v, weight] : graph[u]) {
        dist_mutex.lock();
        if (dist[u] + weight < dist[v]) {
            dist[v] = dist[u] + weight;

            pq_mutex.lock();
            pq.push({dist[v], v});
            pq_mutex.unlock();
        }
        dist_mutex.unlock();
    }
}

void dijkstra(int start, int thread_count = 4) {
    for (const auto& node : graph) {
        dist[node.first] = INT_MAX;
    }
    dist[start] = 0;

    pq.push({0, start});

    while (!pq.empty()) {
        pq_mutex.lock();
        if (pq.empty()) {
            pq_mutex.unlock();
            break;
        }
        auto [currDist, u] = pq.top();
        pq.pop();
        pq_mutex.unlock();

        if (currDist > dist[u]) continue;

        // 开多线程松弛邻居
        vector<thread> threads;
        for (int i = 0; i < thread_count; ++i) {
            threads.emplace_back(relax, u);
        }
        for (auto& t : threads) t.join();
    }

    for (const auto& [node, d] : dist) {
        cout << "到 " << node << " 的最短路径:" << d << endl;
    }
}

int main() {
    graph = {
        {1, {{2, 1}, {3, 4}}},
        {2, {{3, 2}}},
        {3, {}}
    };

    dijkstra(1, 4);

    return 0;
}

注意:

  • 这个是伪并行,多线程松弛邻居节点,但 priority_queue 和 dist 还是得上锁。
  • 线程数别太多,瓶颈在堆锁竞争,更高效方式是:
  • 多队列 + 局部堆(类似 Boost.Graph dijkstra_parallel)
  • 或直接上线程池/ TBB(Threading Building Blocks)

最优思路:
多线程 Dijkstra 的工业级并行版是:

  • 每线程维护自己的局部优先队列
  • 线程间协作式Work Stealing
  • 或者delta-stepping算法(放宽堆顺序要求,提升并行度)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值