【模板】中国剩余定理(CRT)/ 曹冲养猪

【模板】中国剩余定理(CRT)/ 曹冲养猪

题目描述

自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有 161616 头母猪,如果建了 333 个猪圈,剩下 111 头猪就没有地方安家了。如果建造了 555 个猪圈,但是仍然有 111 头猪没有地方去,然后如果建造了 777 个猪圈,还有 222 头没有地方去。你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办?

输入格式

第一行包含一个整数 nnn —— 建立猪圈的次数,接下来 nnn 行,每行两个整数 ai,bia_i, b_iai,bi,表示建立了 aia_iai 个猪圈,有 bib_ibi 头猪没有去处。你可以假定 a1∼ana_1 \sim a_na1an 互质。

输出格式

输出包含一个正整数,即为曹冲至少养母猪的数目。

样例 #1

样例输入 #1

3
3 1
5 1
7 2

样例输出 #1

16

提示

1≤n≤101 \leq n\le101n100≤bi<ai≤1000000 \leq b_i\lt a_i\le1000000bi<ai1000001≤∏ai≤10181 \leq \prod a_i \leq 10^{18}1ai1018

思路

总思路:
在这里插入图片描述

  • 细节1:这道题如果不对CRT的结果进行限制的话,很可能会爆long long,因此我们这时候就得用龟速乘了。其他的就按照模板来写。

代码

#include<iostream>
#include<cstring>

//x=b(mod a)
#define int long long

using namespace std;

const int N = 15;

int a[N],b[N];
int n;
int M=1;

int exgcd(int a,int b,int &x,int &y){
    if(!b){
        x=1,y=0;
        return a;
    }
    
    int d=exgcd(b,a%b,y,x);
    
    y-=a/b*x;
    
    return d;
}

int qmul(int a,int b){
    int res=0;
    
    while(b){
        if(b&1)res=(res+a)%M;
        a=(a+a)%M;
        b>>=1;
    }
    
    return res;
}

void CRT(){
    
    int res=0;
    for(int i=1;i<=n;i++){
        int m=M/a[i];
        int x,y;
        //b[i]*r*r^{-1}
        //逆元也就是求:M*(a[i]^-1)
        //求r-1=> mx=1(mod a[i])
        int d=exgcd(m,a[i],x,y);
        x=(x%a[i]+a[i])%a[i];
        // res=(res+x%M*b[i]%M*m%M)%M;
        res=(res+qmul(qmul(b[i],x),m))%M;
    }
    
    cout<<res;
    
    
}

signed main(){
    //sbljw
    cin>>n;
    
    for(int i=1;i<=n;i++){
        cin>>a[i]>>b[i];
        M*=a[i];
    }
    
    CRT();
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值