地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在 PAT 星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个 PAT 星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是 7 进制数、第 2 位是 2 进制数、第 3 位是 5 进制数、第 4 位是 10 进制数,等等。每一位的进制 d 或者是 0(表示十进制)、或者是 [2,9] 区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT 星人通常只需要记住前 20 位就够用了,以后各位默认为 10 进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203 + 415”呢?我们得首先计算最低位:3 + 5 = 8;因为最低位是 7 进制的,所以我们得到 1 和 1 个进位。第 2 位是:0 + 1 + 1(进位)= 2;因为此位是 2 进制的,所以我们得到 0 和 1 个进位。第 3 位是:2 + 4 + 1(进位)= 7;因为此位是 5 进制的,所以我们得到 2 和 1 个进位。第 4 位是:6 + 1(进位)= 7;因为此位是 10 进制的,所以我们就得到 7。最后我们得到:6203 + 415 = 7201。
输入格式:
输入首先在第一行给出一个 N 位的进制表(0 < N ≤ 20),以回车结束。 随后两行,每行给出一个不超过 N 位的非负的 PAT 数。
输出格式:
在一行中输出两个 PAT 数之和。
输入样例:
30527
06203
415
输出样例:
7201
心得:测试点5卡了一个小时,原来是前缀零的问题,要给P赋初值,至少保证有一位
AC代码:
#include <bits/stdc++.h>
using namespace std;
int main() {
string weighStr, AStr, BStr;
cin >> weighStr >> AStr >> BStr;
vector<int> weigh, a, b, sum;
for (int i = weighStr.size() - 1; i >= 0; i -- ) {
if (weighStr[i] == '0' || weighStr[i] == 'd') {
weigh.push_back(10);
} else {
weigh.push_back(weighStr[i] - '0');
}
}
int aP = 0, bP = 0;
for (int i = 0; i < AStr.size(); i ++ ) {
if (AStr[i] != '0') {
aP = i;
break;
}
}
for (int i = 0; i < BStr.size(); i ++ ) {
if (BStr[i] != '0') {
bP = i;
break;
}
}
for (int i = AStr.size() - 1; i >= aP; i -- ) {
a.push_back(AStr[i] - '0');
}
for (int i = BStr.size() - 1; i >= bP; i -- ) {
b.push_back(BStr[i] - '0');
}
if (a.size() < b.size()) {
swap(a, b);
}
int temp = 0;
for(int i = 0; i < a.size(); i ++ ) {
if (i < b.size()) {
temp = a[i] + b[i] + temp;
} else {
temp = a[i] + temp;
}
if (i < weigh.size()) {
sum.push_back(temp % weigh[i]);
temp /= weigh[i];
} else {
sum.push_back(temp % 10);
temp /= 10;
}
}
if (temp != 0) {
sum.push_back(temp);
}
int sumP = 0;
for (int i = sum.size() - 1; i >= 1; i -- ) {
if (sum[i] != 0) {
sumP = i;
break;
}
}
for (int i = sumP; i >= 0; i -- ) {
cout << sum[i];
}
return 0;
}