知识点回顾:
- 元组
- 可迭代对象
- os模块
元组
元组的特点:
1.有序,可以重复,这一点和列表一样
2.元组中的元素不能修改,这一点非常重要,深度学习场景中很多参数、形状定义好了确保后续不能被修改。很多流行的 ML/DL库(如 TensorFlow,PyTorch,NumPy)在其 API 中都广泛使用了元组来表示形状、配置等。
可以看到,元组最重要的功能是在列表之上,增加了不可修改这个需求。
①元组的创建
my_tuple1 = (1, 2, 3)
my_tuple2 = ('a', 'b', 'c')
my_tuple3 = (1, 'hello', 3.14, [4, 5]) # 可以包含不同类型的元素
print(my_tuple1)
print(my_tuple2)
print(my_tuple3)
输出
②元组的索引
# 元组的索引
my_tuple = ('P', 'y', 't', 'h', 'o', 'n')
print(my_tuple[0]) # 第一个元素
print(my_tuple[2]) # 第三个元素
print(my_tuple[-1]) # 最后一个元素
输出
③元组的切片
# 元组的切片
my_tuple = (0, 1, 2, 3, 4, 5)
print(my_tuple[1:4]) # 从索引 1 到 3 (不包括 4)
print(my_tuple[:3]) # 从开头到索引 2
print(my_tuple[3:]) # 从索引 3 到结尾
print(my_tuple[::2]) # 每隔一个元素取一个
输出
可迭代对象
可迭代对象 (lterable)是 python 中一个非常核心的概念。简单来说,一个可迭代对象就是指那些能够一次返回其成员(元素)的对象,让你可以在一个循环(比如for 循环)中遍历它们。
Python 中有很多内置的可迭代对象,目前我们见过的类型包括:
1.序列类型(Sequence Types):list(列表),tuple(元组),str(字符串),range(范围)
2.集合类型(Set Types):set(集合)
3.字典类型(Mapping Types):dict(字典),迭代时返回键(keys)
4.文件对象(File objects)
5.生成器(Generators)
6.迭代器(lterators)本身
①列表迭代
# 列表 (list)
print("迭代列表:")
my_list = [1, 2, 3, 4, 5]
for item in my_list:
print(item)
②元组的迭代
# 元组 (tuple)
print("迭代元组:")
my_tuple = ('a', 'b', 'c')
for item in my_tuple:
print(item)
③字符串迭代
# 字符串 (str)
print("迭代字符串:")
my_string = "hello"
for char in my_string:
print(char)
④范围迭代
# range (范围)
print("迭代 range:")
for number in range(5): # 生成 0, 1, 2, 3, 4
print(number)
⑤集合迭代
# 集合类型 (Set Types)
# 集合 (set) - 注意集合是无序的,所以每次迭代的顺序可能不同
print("迭代集合:")
my_set = {3, 1, 4, 1, 5, 9}
for item in my_set:
print(item)
⑥字典迭代
# 字典 (dict) - 默认迭代时返回键 (keys)
print("迭代字典 (默认迭代键):")
my_dict = {'name': 'Alice', 'age': 30, 'city': 'Singapore'}
for key in my_dict:
print(key)
# 迭代字典的值 (values)
print("迭代字典的值:")
for value in my_dict.values():
print(value)
# 迭代字典的键值对 (items)
print("迭代字典的键值对:")
for key, value in my_dict.items(): # items方法很好用
print(f"Key: {key}, Value: {value}")
OS模块
随着深度学习项目变得越来越大、数据量越来越多、代码结构越来越复杂,你会越来越频繁地用到 0s模块来管理文件、目录、路径,以及进行一些基本的操作系统交互。虽然深度学习的核心在于模型构建和训练,但数据和模型的有效管理是项目成功的关键环节,而 os 模块为此提供了重要的工具。
在简单的入门级项目中,你可能只需要使用 pd.read csv() 加载数据,而不需要直接操作文件路径。但是,当你开始处理图像数据集、自定义数据加载流程、保存和加载复杂的模型结构时,os 模块就会变得非常有用。
好的代码组织和有效的文件管理是大型深度学习项目的基石。os 模块是实现这些目标的重要组成部分。
①导入os
import os
# os是系统内置模块,无需安装
②获取当前工作目录
os.getcwd() # get current working directory 获取当前工作目录的绝对路径
③获取当前工作目录下的文件列表
os.listdir() # list directory 获取当前工作目录下的文件列表
# 我们使用 r'' 原始字符串,这样就不需要写双反斜杠 \\,因为\会涉及到转义问题
path_a = r'C:\Users\YourUsername\Documents' # r''这个写法是写给python解释器看,他只会读取引号内的内容,不用在意r的存在会不会影响拼接
path_b = 'MyProjectData'
file = 'results.csv'
# 使用 os.path.join 将它们安全地拼接起来,os.path.join 会自动使用 Windows 的反斜杠 '\' 作为分隔符
file_path = os.path.join(path_a , path_b, file)
file_path
④环境变量方法
# os.environ 表现得像一个字典,包含所有的环境变量
os.environ
# 使用 .items() 方法可以方便地同时获取变量名(键)和变量值,之前已经提过字典的items()方法,可以取出来键和值
# os.environ是可迭代对象
for variable_name, value in os.environ.items():
# 直接打印出变量名和对应的值
print(f"{variable_name}={value}")
# 你也可以选择性地打印总数
print(f"\n--- 总共检测到 {len(os.environ)} 个环境变量 ---")