基于python的花卉识别系统

花卉识别系统是一个基于Python、PyQt5、深度学习框架的智能应用系统,能够对花卉图像进行自动识别和分类。系统采用PyQt5构建了美观的用户界面,结合PyTorch深度学习框架实现图像识别功能,并通过MySQL数据库存储用户信息和识别记录。

技术架构如下:

1、前端界面:

①框架:基于PyQt5开发,采用现代化的浅紫色渐变UI设计

②界面组件:登录窗口、主界面、历史记录窗口等模块化设计

③交互方式:用户友好的点击式操作流程

2、后端技术:

①深度学习框架:PyTorch

②图像识别模型:MobileNet (轻量级CNN网络)

③图像处理:PIL和torchvision库

④数据持久化:MySQL数据库

核心功能如下:

1、用户管理系统

用户注册:支持用户名和密码注册

用户登录:安全的身份验证机制

密码修改:用户可自行更新账户密码

2、花卉识别功能

单张图像识别:上传单张图片进行识别

批量识别模式:支持文件夹内多张图片批量识别

识别结果展示:显示识别的花卉种类、置信度及相关描述

历史记录查询:可查看历史识别结果

数据导出功能:将识别结果导出为CSV格式

模型训练过程如下:

1、数据集处理

使用了包含多种花卉品种的分类数据集

共有16个不同类别的花卉

数据增强技术:随机裁剪、缩放、翻转等提高模型泛化能力

2、模型选择与训练

采用MobileNet预训练模型

迁移学习:微调模型适应花卉分类任务

使用Adam优化器和交叉熵损失函数

训练过程中采用学习率衰减策略

模型保存于"weights/flower-best-epoch.pth"

识别算法流程:

  • 加载预处理后的图像
  • 通过MobileNet模型前向传播
  • 使用Softmax函数计算各类别概率
  • 选择最高概率的类别作为识别结果

系统相关界面如下:

系统支持功能定制。如不会调试部署可以申请远程部署服务,调试要时间,需额外收费,感谢理解~

另:需要添加或定制代码功能、其他相关咨询可以后台发送具体要求。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值