花卉识别系统是一个基于Python、PyQt5、深度学习框架的智能应用系统,能够对花卉图像进行自动识别和分类。系统采用PyQt5构建了美观的用户界面,结合PyTorch深度学习框架实现图像识别功能,并通过MySQL数据库存储用户信息和识别记录。
技术架构如下:
1、前端界面:
①框架:基于PyQt5开发,采用现代化的浅紫色渐变UI设计
②界面组件:登录窗口、主界面、历史记录窗口等模块化设计
③交互方式:用户友好的点击式操作流程
2、后端技术:
①深度学习框架:PyTorch
②图像识别模型:MobileNet (轻量级CNN网络)
③图像处理:PIL和torchvision库
④数据持久化:MySQL数据库
核心功能如下:
1、用户管理系统
用户注册:支持用户名和密码注册
用户登录:安全的身份验证机制
密码修改:用户可自行更新账户密码
2、花卉识别功能
单张图像识别:上传单张图片进行识别
批量识别模式:支持文件夹内多张图片批量识别
识别结果展示:显示识别的花卉种类、置信度及相关描述
历史记录查询:可查看历史识别结果
数据导出功能:将识别结果导出为CSV格式
模型训练过程如下:
1、数据集处理
使用了包含多种花卉品种的分类数据集
共有16个不同类别的花卉
数据增强技术:随机裁剪、缩放、翻转等提高模型泛化能力
2、模型选择与训练
采用MobileNet预训练模型
迁移学习:微调模型适应花卉分类任务
使用Adam优化器和交叉熵损失函数
训练过程中采用学习率衰减策略
模型保存于"weights/flower-best-epoch.pth"
识别算法流程:
- 加载预处理后的图像
- 通过MobileNet模型前向传播
- 使用Softmax函数计算各类别概率
- 选择最高概率的类别作为识别结果
系统相关界面如下:
系统支持功能定制。如不会调试部署可以申请远程部署服务,调试要时间,需额外收费,感谢理解~
另:需要添加或定制代码功能、其他相关咨询可以后台发送具体要求。