TF-IDF算法及实现

本文介绍了TF-IDF算法在自然语言处理(NLP)中的应用,包括TF-IDF的概念、计算方法和代码实现。通过自编函数和使用sklearn库展示了如何计算TF-IDF,并进行关键词提取和文本相似度搜索。最后,提供了计算TF-IDF的代码示例,用于查找与查询语句最相似的文章。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在看莫烦的NLP的课程,其中关于TF-IDF算法实际编程的时候还是遇到一些小问题,主要是计算方法问题,整理后放上来,加深记忆。

TF-IDF的计算方法有很多种,这里主要用的是SKlearn中的计算方式,根示例代码不太一样,费了点劲儿才搞明白。

目录

一、 TF-IDF算法简介

1. TF:Term Frequency,词频

2. IDF:Inverse Document Frequency,逆向文本频率

3. TF-IDF = TF * IDF

二、代码示例

1. 自编函数

2. 使用sklearn库



一、 TF-IDF算法简介

TF-IDF(term frequency–inverse document frequency,词频-逆向文件频率)算法是一种用于信息检索与文本数据挖掘的常用加权技术。它用统计学方法评估一个词对某篇文章的重要程度,常用来提取文章的关键词,算法简单高效,因此常用于信息检索的粗排阶段。

TF-IDF算法的核心思想是通过统计的方法,评估一个词对一个文件集或者语料库的重要程度。一个词的重要程度跟它在文章中出现的次数成正比,跟它在语料库出现的次数成反比。这种计算方式能有效避免常用词对关键词的影响,提高了关键词与文章之间的相关性。

1. TF:Term Frequency,词频

指的是某个词在某篇文章中出现的次数, 计算公式为:TF = 某词在某文档中出现的次数

也就是说,就一篇文章局部来看,一个单词出现的次数越多就越重要,但这并不是绝对的。比如,a、the、of等单词出现的次数一定不会少,很显然它们并没有什么重要信息。所以,我们接下来要引入IDF。

注意:也有 “TF = 某词在某文档中出现的次数 / 该文档的总词量” 这种计算,但SKLEARN中是采用直接计次。

2. IDF:Inverse Document Frequency,逆向文本频率

指的是某个词在一个文件集或者语料库中区分力指标。计算公式为:

IDF = \log \frac{Nd + 1}{df(d, t)) + 1}+1

其中,Nd是训练集文档总数量,df(d,t)是包含某个单词的文档数量,+1的原因是避免分母为0。

也就是说,对一个文件集或者语料库而言,包含某个单词的文档越少,IDF的值越大,这个词的区分力越强,就越重要。

特别需要注意的是,IDF是针对文件集或者语料库而言的。计算机领域的IDF用在医学领域往往是不合适的。

3. TF-IDF = TF * IDF

综合考虑以某篇文章为中心的局部信息TF,和以某个语料库全局信息为基础的IDF,得到以下公式:

TF-IDF = TF * IDF

特别注意:

在sklearn中,上述计算的TF-IDF会经过一个欧几里得范数归一化:

二、代码示例

以下代码改编自莫烦的NLP课程中的源码。

输入15篇文章,形成一个44个单词的词汇表(去掉两个高频词,a 和 i),计算这15篇文章的tf-idf矩阵。再输入查询语句,计算该语句的tf-idf向量,然后求该语句的tf-idf向量和每一篇文章tf-idf向量的cosin距离,找出距离最近的三篇文章即是搜索结果。

核心思想--向量化。将文章向量化,将待查询语句也向量化,就可以通过计算余弦距离来比较相近程度。注意这里使用两个向量的夹角的余弦值来衡量两个文本间的相似度,而不是常用的欧氏距离,余弦相似度更加注重两个向量在方向上的差异,而不是实际距离差异。

1. 自编函数

import numpy as np
from collections import Counter
import itertools
from sklearn import preprocessing
from plot import show_tfidf
# from sklearn.metrics.pairwise import cosine_similarity


#15 docs
docs = [
    "it is a good day, I like to stay here",
    "I am happy to be here",
    "I am bob",
    "it is sunny today",
    "I have a party today",
    "it is a dog and that is a cat",
    "there are dog and cat on the tree",
    "I study hard this morning",
    "today is a good day",
    "tomorrow will be a good day",
    "I like coffee, I like book and I like apple",
    "I do not like it",
    "I am kitty, I like bob",
    "I do not care who like bob, but I like kitty",
    "It is coffee time, bring your cup",
]

#vocablist包括44 words 去掉两个超高频单词
docs_words = [d.lower().replace(",", "").split(" ") for d in docs]
wordlist = list(itertools.chain(*docs_words))       #遍历对象,去除内嵌,为什么需要加*没细看
vocablist = list(set(wordlist))
vocablist.sort(key=wordlist.index)        #转set去重,保持原序 => 全部单词表
vocablist.remove('a')           #为了根sklearn保持一致,去掉两个超高频单词
vocablist.remove('i')
#print(vocablist)

v2i = {v: i for i, v in enumerate(vocablist)}    #给单词编索引,eg: 'tree': 0    #enumerate函数 index, value
i2v = {i: v for v, i in v2i.items()}             #逆索引,eg: 0: 'tree'         #items函数,value, index
#print(v2i)
#print(i2v)


# tf = 每个单词出现频率
def get_tf():
    # term frequency: how frequent a word appears in a doc
    _tf = np.zeros((len(vocablist), len(docs)), dtype=np.float64)    # [n_vocab, n_doc] =》 [44 * 15]矩阵
    for i, d in enumerate(docs_words):      #循环每篇文章
        counter = Counter(d)
        for v in counter.keys():            #统计每篇文章单词计数
            if v in v2i:
                _tf[v2i[v], i] = counter[v]    #每个单词出现频率
    return _tf


# idf = 1 + np.log((len(docs) + 1) / (该单词在几篇文章中出现 + 1))
def get_idf(method="sklearn"):
    # inverse document frequency: low idf for a word appears in more docs, mean less important
    df = np.zeros((len(i2v), 1))
    for i in range(len(i2v)):        #循环词汇表每一个单词
        d_count = 0
        for d in docs_words:
            d_count += 1 if i2v[i] in d else 0     #该单词在几篇文章中出现
        df[i, 0] = d_count

    idf_fn = lambda x: 1 + np.log((len(docs) + 1) / (x+1))
    if idf_fn is None:
        raise ValueError
    return idf_fn(df)


def cosine_similarity(_tf_idf, q):
    unit_ds = _tf_idf / np.sqrt(np.sum(np.square(_tf_idf)))
    unit_q = q / np.sqrt(np.sum(np.square(q)))
    similarity = unit_ds.T.dot(unit_q).ravel()
    return similarity


#根据输入,比较每篇文章的相似度,不考虑输入句子中新加入的单词
def docs_score(q):
    q_words = q.replace(",", "").split(" ")
    counter = Counter(q_words)
    q_tf = np.zeros((len(idf), 1), dtype=float)
    for v in counter.keys():
        if v in v2i:
            q_tf[v2i[v], 0] = counter[v]  # 每个单词出现频率

    q_vec = q_tf * idf
    q_tf_idf = preprocessing.normalize(q_vec, norm='l2', axis=0)  # 欧几里得范数归一化

    #q_scores = cosine_similarity(tf_idf.transpose(), q_tf_idf.transpose())  #如果用库中函数,就用归一化后的
    q_scores = cosine_similarity(origin_tf_idf, q_vec)   #如果自已写,就用未归一化的

    return q_scores


#获得tf_idf最高的n个词
def get_keywords(n=2):
    for c in range(15):
        col = tf_idf[:, c]
        idx = np.argsort(col)[-n:][::-1]    #从小到大排列,提取其对应的index, 从后向前反向取
        print("doc{}, top{} keywords {}".format(c, n, [i2v[i] for i in idx]))  #TOP2,TOP1




#----------TEST
tf = get_tf()           # [n_vocab, n_doc] 44*15
idf = get_idf()         # [n_vocab, 1]     44*1
origin_tf_idf = tf * idf       # [n_vocab, n_doc]   44*15
tf_idf = preprocessing.normalize(origin_tf_idf, norm='l2', axis=0)    #欧几里得范数归一化

print("\ntf samples:\n", tf[:2])
print("\nidf sample:\n", idf[:2])
print("\ntf_idf sample:\n", tf_idf[:2])

#--- 提取关键词
get_keywords()

#--- 搜索最相似的句子
q = "I get a coffee cup"
scores = docs_score(q)
d_ids = scores.ravel().argsort()[-3:][::-1]
print("\ntop 3 docs for '{}':\n{}".format(q, [docs[i] for i in d_ids]))

show_tfidf(tf_idf.T, [i2v[i] for i in range(tf_idf.shape[0])], "tfidf_matrix")

2. 使用sklearn库

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from plot import show_tfidf


docs = [
    "it is a good day, I like to stay here",
    "I am happy to be here",
    "I am bob",
    "it is sunny today",
    "I have a party today",
    "it is a dog and that is a cat",
    "there are dog and cat on the tree",
    "I study hard this morning",
    "today is a good day",
    "tomorrow will be a good day",
    "I like coffee, I like book and I like apple",
    "I do not like it",
    "I am kitty, I like bob",
    "I do not care who like bob, but I like kitty",
    "It is coffee time, bring your cup",
]

vectorizer = TfidfVectorizer()
tf_idf = vectorizer.fit_transform(docs)
# print("idf: ", [(n, idf) for idf, n in zip(vectorizer.idf_, vectorizer.get_feature_names())])
# print("v2i: ", vectorizer.vocabulary_)
# print(tf_idf)


q = "I get a coffee cup"
qtf_idf = vectorizer.transform([q])

res = cosine_similarity(tf_idf, qtf_idf)
res = res.ravel().argsort()[-3:]
print("\ntop 3 docs for '{}':\n{}".format(q, [docs[i] for i in res[::-1]]))

i2v = {i: v for v, i in vectorizer.vocabulary_.items()}
dense_tfidf = tf_idf.todense()  #tf_idf为稀疏矩阵
show_tfidf(dense_tfidf, [i2v[i] for i in range(dense_tfidf.shape[1])], "tfidf_sklearn_matrix")

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值