
目标检测
文章平均质量分 93
目标检测经典论文学习,前沿动向跟踪。
Ada的信徒
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【论文阅读】目标检测--Attention Is All You Need 论文笔记(翻译+理解)
Transformer:基于纯注意力机制的序列转换模型 本文提出Transformer架构,完全摒弃传统RNN和CNN结构,仅依靠注意力机制实现序列转换。相比主流循环网络,Transformer具有更强的并行计算能力,显著降低训练时间。在WMT 2014英德翻译任务中取得28.4 BLEU(提升2分),英法翻译任务达到41.8 BLEU(8GPU训练3.5天),创下单模型最佳成绩。模型采用编码器-解码器堆叠结构,通过多头自注意力机制捕捉长距离依赖,残差连接和层归一化保障训练稳定性。解码器使用掩码机制实现自回原创 2025-06-24 17:32:01 · 488 阅读 · 0 评论 -
【论文阅读】目标检测--Fast R-CNN 论文笔记(翻译+理解)
本文提出了一种用于目标检测的快速区域卷积网络方法(Fast R-CNN)。Fast R-CNN基于之前的工作,利用深度卷积网络高效地对目标候选区进行分类。与之前的工作相比,Fast R-CNN提出多个创新提升了训练和测试速度,同时提高了检测准确性。Fast R-CNN在训练VGG16时比R-CNN快9倍,在测试时快213倍,并在PASCAL VOC 2012上获得了更高的mAP。与SPPnet相比,Fast R-CNN训练VGG16快3倍,测试快10倍,且精度更高。原创 2024-11-03 20:15:06 · 1025 阅读 · 0 评论 -
【论文阅读】目标检测--Faster R-CNN 论文笔记(翻译+理解)
本文提出了一种用于目标检测的快速区域卷积网络方法(Fast R-CNN)。Fast R-CNN基于之前的工作,利用深度卷积网络高效地对目标候选区进行分类。与之前的工作相比,Fast R-CNN提出多个创新提升了训练和测试速度,同时提高了检测准确性。Fast R-CNN在训练VGG16时比R-CNN快9倍,在测试时快213倍,并在PASCAL VOC 2012上获得了更高的mAP。与SPPnet相比,Fast R-CNN训练VGG16快3倍,测试快10倍,且精度更高。原创 2024-11-14 11:37:38 · 148 阅读 · 0 评论 -
【论文阅读】目标检测--SPP-net论文笔记(翻译+理解)
现有的深度卷积神经网络需要固定大小的输入图像(例如,224×224)。这个要求是“人为的”,可能会降低对任意大小/比例的图像或子图像的识别精度。本文在深度卷积神经网络中使用了新的池化策略,“空间金字塔池化”,以避免上述限制。新的网络结构称为SPP-net,无论输入图像大小/比例是多少,都可以生成固定长度的表示。另外,金字塔池化也对目标变形具有鲁棒性。由于这些优势,SPP-net通常能够改善所有基于CNN的图像分类方法。原创 2024-05-07 09:24:12 · 1129 阅读 · 0 评论 -
【论文阅读】目标检测--RCNN论文笔记(翻译+理解)
在过去几年中,在经典的PASCAL VOC数据集上进行的目标检测性能已经达到瓶颈。最佳性能的方法一般是复杂的集成方法,通常将多个低级图像特征与高级语义上下文相结合。在本文中,我们提出了一种简单且可扩展的检测算法,相对于VOC 2012上的先前最佳结果,平均精度(mean average precision, mAP)提高了30%以上,达到了53.3%的mAP。我们的方法结合了两个关键点:(1)将高特征表示的卷积神经网络(CNN)应用于自下而上的候选区域,以定位和分割对象;原创 2024-04-17 15:22:16 · 739 阅读 · 0 评论